865 resultados para Vehicule routing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an analytical Incident Traffic Management framework for freeway incident modeling and traffic re-routing. The proposed framework incorporates an econometric incident duration model and a traffic re-routing optimization module. The incident duration model is used to estimate the expected duration of the incident and thus determine the planning horizon for the re-routing module. The re-routing module is a CTM-based Single Destination System Optimal Dynamic Traffic Assignment model that generates optimal real-time strategies of re-routing freeway traffic to its adjacent arterial network during incidents. The proposed framework has been applied to a case study network including a freeway and its adjacent arterial network in South East Queensland, Australia. The results from different scenarios of freeway demand and incident blockage extent have been analyzed and advantages of the proposed framework are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy dynamic flood routing model (FDFRM) for natural channels is presented, wherein the flood wave can be approximated to a monoclinal wave. This study is based on modification of an earlier published work by the same authors, where the nature of the wave was of gravity type. Momentum equation of the dynamic wave model is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. Hence, the FDFRM gets rid of the assumptions associated with the momentum equation. Also, it overcomes the necessity of calculating friction slope (S-f) in flood routing and hence the associated uncertainties are eliminated. The fuzzy rule based model is developed on an equation for wave velocity, which is obtained in terms of discontinuities in the gradient of flow parameters. The channel reach is divided into a number of approximately uniform sub-reaches. Training set required for development of the fuzzy rule based model for each sub-reach is obtained from discharge-area relationship at its mean section. For highly heterogeneous sub-reaches, optimized fuzzy rule based models are obtained by means of a neuro-fuzzy algorithm. For demonstration, the FDFRM is applied to flood routing problems in a fictitious channel with single uniform reach, in a fictitious channel with two uniform sub-reaches and also in a natural channel with a number of approximately uniform sub-reaches. It is observed that in cases of the fictitious channels, the FDFRM outputs match well with those of an implicit numerical model (INM), which solves the dynamic wave equations using an implicit numerical scheme. For the natural channel, the FDFRM Outputs are comparable to those of the HEC-RAS model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A channel router is an important design aid in the design automation of VLSI circuit layout. Many algorithms have been developed based on various wiring models with routing done on two layers. With the recent advances in VLSI process technology, it is possible to have three independent layers for interconnection. In this paper two algorithms are presented for three-layer channel routing. The first assumes a very simple wiring model. This enables the routing problem to be solved optimally in a time of O(n log n). The second algorithm is for a different wiring model and has an upper bound of O(n2) for its execution time. It uses fewer horizontal tracks than the first algorithm. For the second model the channel width is not bounded by the channel density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-based systems are seen as good candidates for supporting distributed applications in dynamic and ubiquitous environments because they support decoupled and asynchronous many-to-many information dissemination. Event systems are widely used, because asynchronous messaging provides a flexible alternative to RPC (Remote Procedure Call). They are typically implemented using an overlay network of routers. A content-based router forwards event messages based on filters that are installed by subscribers and other routers. The filters are organized into a routing table in order to forward incoming events to proper subscribers and neighbouring routers. This thesis addresses the optimization of content-based routing tables organized using the covering relation and presents novel data structures and configurations for improving local and distributed operation. Data structures are needed for organizing filters into a routing table that supports efficient matching and runtime operation. We present novel results on dynamic filter merging and the integration of filter merging with content-based routing tables. In addition, the thesis examines the cost of client mobility using different protocols and routing topologies. We also present a new matching technique called temporal subspace matching. The technique combines two new features. The first feature, temporal operation, supports notifications, or content profiles, that persist in time. The second feature, subspace matching, allows more expressive semantics, because notifications may contain intervals and be defined as subspaces of the content space. We also present an application of temporal subspace matching pertaining to metadata-based continuous collection and object tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The publish/subscribe paradigm has lately received much attention. In publish/subscribe systems, a specialized event-based middleware delivers notifications of events created by producers (publishers) to consumers (subscribers) interested in that particular event. It is considered a good approach for implementing Internet-wide distributed systems as it provides full decoupling of the communicating parties in time, space and synchronization. One flavor of the paradigm is content-based publish/subscribe which allows the subscribers to express their interests very accurately. In order to implement a content-based publish/subscribe middleware in way suitable for Internet scale, its underlying architecture must be organized as a peer-to-peer network of content-based routers that take care of forwarding the event notifications to all interested subscribers. A communication infrastructure that provides such service is called a content-based network. A content-based network is an application-level overlay network. Unfortunately, the expressiveness of the content-based interaction scheme comes with a price - compiling and maintaining the content-based forwarding and routing tables is very expensive when the amount of nodes in the network is large. The routing tables are usually partially-ordered set (poset) -based data structures. In this work, we present an algorithm that aims to improve scalability in content-based networks by reducing the workload of content-based routers by offloading some of their content routing cost to clients. We also provide experimental results of the performance of the algorithm. Additionally, we give an introduction to the publish/subscribe paradigm and content-based networking and discuss alternative ways of improving scalability in content-based networks. ACM Computing Classification System (CCS): C.2.4 [Computer-Communication Networks]: Distributed Systems - Distributed applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Printed Circuit Board (PCB) layout design is one of the most important and time consuming phases during equipment design process in all electronic industries. This paper is concerned with the development and implementation of a computer aided PCB design package. A set of programs which operate on a description of the circuit supplied by the user in the form of a data file and subsequently design the layout of a double-sided PCB has been developed. The algorithms used for the design of the PCB optimise the board area and the length of copper tracks used for the interconnections. The output of the package is the layout drawing of the PCB, drawn on a CALCOMP hard copy plotter and a Tektronix 4012 storage graphics display terminal. The routing density (the board area required for one component) achieved by this package is typically 0.8 sq. inch per IC. The package is implemented on a DEC 1090 system in Pascal and FORTRAN and SIGN(1) graphics package is used for display generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have proposed and implemented a joint Medium Access Control (MAC) -cum- Routing scheme for environment data gathering sensor networks. The design principle uses node 'battery lifetime' maximization to be traded against a network that is capable of tolerating: A known percentage of combined packet losses due to packet collisions, network synchronization mismatch and channel impairments Significant end-to-end delay of an order of few seconds We have achieved this with a loosely synchronized network of sensor nodes that implement Slotted-Aloha MAC state machine together with route information. The scheme has given encouraging results in terms of energy savings compared to other popular implementations. The overall packet loss is about 12%. The battery life time increase compared to B-MAC varies from a minimum of 30% to about 90% depending on the duty cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research addresses efficient use of the available energy in resource constrained mobile sensor nodes to prevent early depletion of the battery and maximize the packet delivery rate. This research contributes two energy-aware enhancement strategies to improve the network lifetime and delivery probability for energy constrained applications in the delay-tolerant networking environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems present remarkable adaptation, reliability, and robustness in various environments, even under hostility. Most of them are controlled by the individuals in a distributed and self-organized way. These biological mechanisms provide useful resources for designing the dynamical and adaptive routing schemes of wireless mobile sensor networks, in which the individual nodes should ideally operate without central control. This paper investigates crucial biologically inspired mechanisms and the associated techniques for resolving routing in wireless sensor networks, including Ant-based and genetic approaches. Furthermore, the principal contributions of this paper are as follows. We present a mathematical theory of the biological computations in the context of sensor networks; we further present a generalized routing framework in sensor networks by diffusing different modes of biological computations using Ant-based and genetic approaches; finally, an overview of several emerging research directions are addressed within the new biologically computational framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RECONNECT is a Network-on-Chip using a honeycomb topology. In this paper we focus on properties of general rules applicable to a variety of routing algorithms for the NoC which take into account the missing links of the honeycomb topology when compared to a mesh. We also extend the original proposal [5] and show a method to insert and extract data to and from the network. Access Routers at the boundary of the execution fabric establish connections to multiple periphery modules and create a torus to decrease the node distances. Our approach is scalable and ensures homogeneity among the compute elements in the NoC. We synthesized and evaluated the proposed enhancement in terms of power dissipation and area. Our results indicate that the impact of necessary alterations to the fabric is negligible and effects the data transfer between the fabric and the periphery only marginally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.