908 resultados para Vehicle Steering.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Vehicle Engineering Research Division, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Vehicle Engineering Research Division, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Track critical locations with respect to the railway vehicle safety are the passages through the turnouts. The purpose of this investigation is to evaluate the safety of a railway vehicle crossing a turnout. In this study, the topography of a track turnout lay-out has been experimentally measured, and its geometric properties were synthesised. Results show that a constant wavelength vehicle oscillation occurs on the switches in the turnout and that the maximum lateral force at 65 km/h is almost 65% greater than those at low speeds (under 30 km/h).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic vehicle behavior is used to identify safe traffic speed limits. The proposed methodology is based on the vehicle vertical wheel contact force response excited by measured pavement irregularities on the frequency domain. A quarter-car model is used to identify vehicle dynamic behavior. The vertical elevation of an unpaved road surface has been measured. The roughness spectral density is quantified as ISO Level C. Calculations for the vehicle inertance function were derived by using the vertical contact force transfer function weighed by the pavement spectral density roughness function in the frequency domain. The statistical contact load variation is obtained from the vehicle inertance density function integration. The vehicle safety behavior concept is based on its handling ability properties. The ability to generate tangential forces on the wheel/road contact interface is the key to vehicle handling. This ability is related to tire/pavement contact forces. A contribution to establish a traffic safety speed limit is obtained from the likelihood of the loss of driveability. The results show that at speeds faster than 25 km/h the likelihood of tire contact loss is possible when traveling on the measured road type. DOI: 10.1061/(ASCE)TE.19435436.0000216. (C) 2011 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries that occurs in a major Brazilian retail group. A single depot attends 519 stores of the group distributed in 11 Brazilian states. To find good solutions to this problem, we propose heuristics as initial solutions and a scatter search (SS) approach. Next, the produced solutions are compared with the routes actually covered by the company. Our results show that the total distribution cost can be reduced significantly when such methods are used. Experimental testing with benchmark instances is used to assess the merit of our proposed procedure. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO](3+) showed the detection and quantification of nitric oxide (NO) and singlet oxygen ((1)O(2)) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.