988 resultados para Variety resistance
Resumo:
Pratylenchus thornei and P. neglectus are two species of root-lesion nematode that cause substantial yield losses in wheat. No commercially available wheat variety has resistance to both species. A doubled-haploid population developed from a cross between the synthetic hexaploid wheat line CPI133872 and the bread wheat Janz was used to locate and tag quantitative trait loci (QTLs) associated with resistance to both P. thornei and P. neglectus. Wheat plants were inoculated with both species of nematode in independent replicated glasshouse trials repeated over 2 years. Known locations of wheat microsatellite markers were used to construct a framework map. After an initial single-marker analysis to detect marker-trait linkages, chromosome regions associated with putative QTLs were targetted with microsatellite markers to increase map density in the chromosome regions of interest. In total, 148 wheat microsatellite markers and 21 amplified fragment length polymorphism markers were mapped. The codominant microsatellite marker Xbarc183 on the distal end of chromosome 6DS was allelic for resistance to both P. thornei and P. neglectus. The QTL were designated QRlnt.lrc-6D.1 and QRlnn.lrc-6D.1, for the 2 traits, respectively. The allele inherited from CPI133872 explained 22.0-24.2% of the phenotypic variation for P. thornei resistance, and the allele inherited from Janz accounted for 11.3-14.0% of the phenotypic variation for P. neglectus resistance. Composite interval mapping identified markers that flank a second major QTL on chromosome 6DL (QRlnt.lrc-6D.2) that explained 8.3-13.4% of the phenotypic variation for P. thornei resistance. An additional major QTL associated with P. neglectus resistance was detected on chromosome 4DS (QRlnn.lrc-4D.1) and explained a further 10.3-15.4% of the phenotypic variation. The identification and tagging of nematode resistance genes with molecular markers will allow appropriate allele combinations to be selected, which will aid the successful breeding of wheat with dual nematode resistance.
Resumo:
Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.
Resumo:
Widespread adoption of lead-free materials and processing for printed circuit board (PCB) assembly has raised reliability concerns regarding surface insulation resistance (SIR) degradation and electrochemical migration (ECM). As PCB conductor spacings decrease, electronic products become more susceptible to these failures mechanisms, especially in the presence of surface contamination and flux residues which might remain after no-clean processing. Moreover, the probability of failure due to SIR degradation and ECM is affected by the interaction between physical factors (such as temperature, relative humidity, electric field) and chemical factors (such as solder alloy, substrate material, no-clean processing). Current industry standards for assessing SIR reliability are designed to serve as short-term qualification tests, typically lasting 72 to 168 hours, and do not provide a prediction of reliability in long-term applications. The risk of electrochemical migration with lead-free assemblies has not been adequately investigated. Furthermore, the mechanism of electrochemical migration is not completely understood. For example, the role of path formation has not been discussed in previous studies. Another issue is that there are very few studies on development of rapid assessment methodologies for characterizing materials such as solder flux with respect to their potential for promoting ECM. In this dissertation, the following research accomplishments are described: 1). Long-term temp-humidity-bias (THB) testing over 8,000 hours assessing the reliability of printed circuit boards processed with a variety of lead-free solder pastes, solder pad finishes, and substrates. 2). Identification of silver migration from Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder, which is a completely new finding compared with previous research. 3). Established the role of path formation as a step in the ECM process, and provided clarification of the sequence of individual steps in the mechanism of ECM: path formation, electrodeposition, ion transport, electrodeposition, and filament formation. 4). Developed appropriate accelerated testing conditions for assessing the no-clean processed PCBs' susceptibility to ECM: a). Conductor spacings in test structures should be reduced in order to reflect the trend of higher density electronics and the effect of path formation, independent of electric field, on the time-to-failure. b). THB testing temperatures should be modified according to the material present on the PCB, since testing at 85oC can cause the evaporation of weak organic acids (WOAs) in the flux residues, leading one to underestimate the risk of ECM. 5). Correlated temp-humidity-bias testing with ion chromatography analysis and potentiostat measurement to develop an efficient and effective assessment methodology to characterize the effect of no-clean processing on ECM.
Resumo:
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.
Resumo:
Resistance to chemotherapy ('drug resistance') is a fundamental problem that limits the effectiveness of many chemotherapies currently used to treat cancer. Drug resistance can occur due to a variety of mechanisms, such as increased drug inactivation, drug efflux from cancer cells, enhanced repair of chemotherapy-induced damage, activation of pro-survival pathways and inactivation of cell death pathways. In this article, we review some of the major mechanisms of drug resistance and discuss how new molecularly-targeted therapies are being increasingly used to overcome these resistance mechanisms.
Resumo:
BACKGROUND: The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein.
METHODS: We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells.
RESULTS: We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents.
CONCLUSIONS: Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.
Resumo:
The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4 V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4 V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.
Resumo:
O tributilestanho (TBT) é considerado um dos xenobióticos mais tóxicos, produzidos e deliberadamente introduzidos no meio ambiente pelo Homem. Tem sido usado numa variedade de processos industriais e subsequentemente descarregado no meio ambiente. O tempo de meia-vida do TBT em águas marinhas é de várias semanas, mas em condições de anóxia nos sedimentos, pode ser de vários anos, devido à sua degradação mais lenta. Embora o TBT tenha sido descrito como sendo tóxico para eucariotas e procariotas, muitas bactérias podem ser resistentes a este composto. O presente trabalho teve como objetivo principal elucidar o mecanismo de resistência ao TBT em bactérias. Para além disso, pretendeu-se desenvolver um biorepórter para detectar TBT no ambiente. Para atingir estes objetivos foram delineadas várias tarefas cujos principais resultados obtidos se apresentam a seguir. Várias bactérias resistentes ao TBT foram isoladas de sedimento e água do Porto de Pesca Longínqua (PPL) na Ria de Aveiro, Portugal. Entre estas, Aeromonas molluscorum Av27 foi selecionada devido à sua elevada resistência a este composto (concentrações até 3 mM), à sua capacidade de degradar o TBT em compostos menos tóxicos (dibutilestanho, DBT e monobutilestanho, MBT) e também por usar o TBT como fonte de carbono. A. molluscorum Av27 foi caracterizada genotipica e fenotipicamente. Os fatores de virulência estudados mostraram que esta estirpe i) possui atividade lipolítica; ii) não é citotóxica para células de mamíferos, nomeadamente para células Vero; iii) não possui integrões de classe I e II e iv) possui cinco plasmídeos com aproximadamente 4 kb, 7 kb, 10 kb, 100 kb e mais de 100 kb. Estes resultados mostraram que a estirpe Av27 não é tóxica, aumentando assim o interesse nesta bactéria para futuras aplicações, nomeadamente na bioremediação. Os testes de toxicidade ao TBT mostraram que este composto tem um impacto negativo no crescimento desta estirpe, bem como, na densidade, no tamanho e na atividade metabólica das células e é responsável pela formação de agregados celulares. Assim, o TBT mostrou ser bastante tóxico para as bactérias interferindo com a atividade celular geral. O gene Av27-sugE, que codifica a proteína SugE pertencente à família das “small multidrug resistance proteins” (SMR), foi identificado como estando envolvido na resistência ao TBT nesta estirpe. Este gene mostrou ser sobreexpresso quando as células crescem na presença de TBT. O promotor do gene Av27-sugE foi utilizado para construir um bioreporter para detetar TBT, contendo o gene da luciferase do pirilampo como gene repórter. O biorepórter obtido reúne as características mais importantes de um bom biorepórter: sensibilidade (intervalo de limite de detecção de 1-1000 nM), rapidez (3 h são suficientes para a deteção de sinal) e, possivelmente, não é invasivo (pois foi construído numa bactéria ambiental). Usando sedimento recolhido no Porto de Pesca Longínqua da Ria de Aveiro, foi preparada uma experiência de microcosmos com o intuito de avaliar a capacidade de Av27 para bioremediar o TBT, isoladamente ou em associação com a comunidade bacteriana indígena. A análise das amostras de microcosmos por PCR-DGGE e de bibliotecas de 16S rDNA revelaram que a comunidade bacteriana é relativamente estável ao longo do tempo, mesmo quando Av27 é inoculada no sedimento. Para além disso, o sedimento estuarino demonstrou ser dominado por bactérias pertencentes ao filo Proteobacteria (sendo mais abundante as Delta e Gammaproteobacteria) e Bacteroidetes. Ainda, cerca de 13% dos clones bacterianos não revelaram nenhuma semelhança com qualquer dos filos já definidos e quase 100% afiliou com bactérias não cultiváveis do sedimento. No momento da conclusão desta tese, os resultados da análise química de compostos organoestânicos não estavam disponíveis, e por essa razão não foi possível tirar quaisquer conclusões sobre a capacidade desta bactéria remediar o TBT em sedimentos. Esses resultados irão ajudar a esclarecer o papel de A. molluscorum Av27 na remediação de TBT. Recentemente, a capacidade da estirpe Av27 remediar solo contaminado com TBT foi confirmada em bioensaios realizados com plantas, Brassica rapa e Triticum aestivum (Silva 2011a), e também com invertebrados Porcellionides pruinosus (Silva 2011B). Assim, poder-se-á esperar que a bioremediação do sedimento na experiência de microcosmos também tenha ocorrido. No entanto, só a análise química dos compostos organostânicos deverá ser conclusiva. Devido à dificuldade em realizar a análise analítica de organoestânicos, um método de bioensaio fácil, rápido e barato foi adaptado para avaliar a toxicidade do TBT em laboratório, antes de se proceder à análise química das amostras. O método provou a sua utilidade, embora tenha mostrado pouca sensibilidade quando se usam concentrações de TBT baixas. Em geral, os resultados obtidos contribuíram para um melhor entendimento do mecanismo de resistência ao TBT em bactérias e mostraram o potencial biotecnológico de A. molluscorum Av27, nomeadamente, no que refere à sua possível aplicação na descontaminação de TBT no ambiente e também no desenvolvimento de biorepórteres.
Resumo:
Two cytoplasmic, glucosamine resistant mutants of Saccharomyces cerevisiae, GR6 and GR10, were examined to determine whether or not the lesions involved were located on mitochondrial DNA. Detailed investigation of crosses of GR6 and GR10 or their derivatives to strains bearing known mitochondrial markers demonstrated that: 1. the frequency of glucos~~ine resistance in diploids was independent of factors influencing mitochondrial marker output. 2. upon tetrad analysis a variety of tetrad ratios was observed for glucosamine resistance whereas mitochondrial markers segregated 4:0 or 0:4 (resistant:sensitive). 3. glucosamine resistance and mitochondrial markers segregated differentially with time. 4. glucosamine resistance persisted following treatment of a GRIO derivative with ethidium bromide at concentrations high enough to eliminate all mitochondrial DNA. 5. haploid spore clones displayed two degrees of glucosamine resistance, weak and strong, while growth due to mitochondrial mutations was generally thick and confluent. 6. a number of glucosamine resistant diploids and haploids, which also possessed a mithchondrial resistance mutation, were unable to grow on medium containing both glucosamine and the particular drug involved. 3 These observations 1~ 6 provided strong evidence that the cytoplasmic glucosamine resistant mutations present in GR6 and GRiO were not situated on mitochondrial DNA. Comparison of the glucosamine resistance mutations to some other known cytoplasmic determinants revealed that: 7. glucosamine resistance and the expression of the killer phenotype were separate phenomena. 8. unlike yeast carrying resistance conferring episomes GR6 and GR10 were not resistant to venturicidin or oligomycin and the GR factor exhibited genetic behaviour different from that of the episomal determinants. These results 7--+8 suggested that glucosamine resistance was not associated with the killer determinant nor with alleged yeast episomes. It is therefore proposed that a yeast plasmid(s), previously undescribed, is responsible for glucosamine resistance. The evidence to date is compatible with the hypothesis that GR6 and GR10 carry allelic mutations of the same plasmid which is tentatively designated (GGM).
Resumo:
Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.
Resumo:
Plusieurs études ont examiné la sensibilité aux antimicrobiens chez les bactéries d’organismes provenant de produits issus de l’aquaculture ou de leur environnement. Aucune information n’est cependant disponible concernant la résistance aux antimicrobiens dans les bactéries de la flore de poissons ou de fruits de mer vendus au détail au Canada. C’est particulièrement vrai en ce qui a trait aux bactéries des genres Aeromonas et Vibrio, dont certaines espèces sont des agents pathogènes zoonotiques connus. Au cours de cette étude, la sensibilité aux antimicrobiens d’isolats d’Aeromonas spp. et de Vibrio spp. provenant de poissons et de crevettes domestiques et importés a été mesurée à l’aide de techniques de micro dilution en bouillon et/ou de diffusion sur disque. Les classes d’antimicrobiens examinés comprenaient les tétracyclines (TET), les inhibiteurs de la voie des folates (sulfadiméthoxine-triméthoprime, SXT), le florfenicol (FLO), et les quinolones (acide nalidixique / enrofloxacine, NA/ENO). Des valeurs seuils épidémiologiques pour Aeromonas et Vibrio ont été établies en utilisant la méthode d’interprétation normalisée des données de résistance provenant de diffusion sur disque. La recherche de gènes de résistance associés au profil de résistance des isolats a été effectuée en utilisant des PCRs et des puces ADN. Le nombre d’isolats résistants aux divers antimicrobiens parmi les 201 isolats d’Aeromonas et les 185 isolats de Vibrio étaient respectivement les suivants: TET (n=24 et 10), FLO (n=1 et 0), SXT (n=2 et 8), NA (n=7 et 5) et ENO (n= 5 et 0). Diverses associations de gènes tet(A), tet(B), tet(E), floR, sul1, sul2, et intI1 ont été détectées, les gènes tet(E), intI1, sul2 et tet(B) étant les plus communs. Les espèces d’Aeromonas et de Vibrio isolées de poissons au détail et de fruits de mer peuvent héberger une variété de gènes de résistance, bien que peu fréquemment. Le risque que représente ces gènes de résistance reste à évaluer en considérant le potentiel infectieux des bactéries, l’utilisation des ces agents antimicrobiens pour le traitement des maladies en aquaculture et en médecine humaine et leur rôle en tant que réservoir de la résistance antimicrobienne.
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites
Resumo:
Many plant strengtheners are promoted for their supposed effects on nutrient uptake and/or resistance induction (IR). In addition, many organic fertilizers are supposed to enhance plant health and several studies have shown that tomatoes grown organically are more resistant to late blight, caused by Phytophthora infestans to tomatoes grown conventionally. Much is known about the mechanisms underlying IR. In contrast, there is no systematic knowledge about genetic variation for IR. Therefore, the following questions were addressed in the presented dissertation: (i) Is there genetic variation among tomato genotypes for inducibility of resistance to P. infestans? (ii) How do different PS compare with the chemical inducer BABA in their ability to IR? (iii) Does IR interact with the inducer used and different organic fertilizers? A varietal screening showed that contrary to the commonly held belief IR in tomatoes is genotype and isolate specific. These results indicate that it should be possible to select for inducibility of resistance in tomato breeding. However, isolate specificity also suggests that there could be pathogen adaptation. The three tested PS as well as two of the three tested organic fertilisers all induced resistance in the tomatoes. Depending on PS or BABA variety and isolate effects varied. In contrast, there were no variety and isolate specific effects of the fertilisers and no interactions with the PS and fertilisers. This suggests that the different PS should work independent of the soil substrate used. In contrast the results were markedly different when isolate mixtures were used for challenge inoculations. Plants were generally less susceptible to isolate mixtures than to single isolates. In addition, the effectiveness of the PS was greater and more similar to BABA when isolate mixtures were used. The fact that the different PS and BABA differed in their ability to induce resistance in different host genotype -pathogen isolate combinations puts the usefulness of IR as a breeding goal in question. This would result in varieties depending on specific inducers. The results with the isolate mixtures are highly relevant. On the one hand they increase the effectiveness of the resistance inducers. On the other hand, measures that increase the pathogen diversity such as the use of diversified host populations will also increase the overall resistance of the hosts. For organic tomato production the results indicate that it is possible to enhance the tomato growing system with respect to plant health management by using optimal fertilisers, plant strengtheners and any measures that increase system diversity.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.
Resumo:
The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.