992 resultados para Variational inequality problem


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The option value problem with two costs is written as a variational inequality. The advantage of this formulation is that it takes place in a fixed domain. Thus no front tracking is needed for numerical approximation of the free boundary. An iterative algorithm is proposed which can be used to solve the nonlinear system obtained by finite differences or finite elements procedures. Especial care has to be taken in the design of differences finites schemes o finite elements due to the degeneracy of the differential operator. These schemes can be absortion or convection dominated nearly to the axis. This is a preliminary note to the study of this kind of problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Al analizar los resultados deficientes de las Pruebas Saber, del PTA ( Programa Todos a Aprender del MEN), y la participación en las Olimpiadas del Conocimiento, de los estudiantes de la Institución Educativa Rural Benigno Mena González del municipio de San Jerónimo, se consideró implementar un proyecto pedagógico, como plan de mejoramiento para la enseñanza y aprendizaje de las matemáticas, que sirviera como una iniciativa para fortalecer los pensamientos numérico y variacional en los estudiantes de secundaria de la Institución; se buscaba, con la implementación de esta propuesta, desarrollar habilidades en dominio, comprensión y solución de situaciones problemas cotidianas dentro del contexto escolar y desde la innovación de nuevas prácticas metodológicas en los procesos educativos. Desde esta perspectiva, nace el interrogante: ¿Cómo modelar una situación problema, teniendo como motivo la unidad facilitadora solidaria denominada Belisol, para fortalecer el pensamiento numérico y variacional, en los estudiantes de la Institución Educativa Rural Benigno Mena González del municipio de San Jerónimo?, para dar tránsito a una propuesta de investigación innovadora. Ahora bien, para intervenir y reflexionar sobre este interrogante, se propuso el método de Investigación Acción Participación (IAP), el cual se aplica a estudios que se interesan sobre realidades humanas y problemáticas cotidianas o sociales, que además, sean reales, de la acción, y de constante participación de los sujetos, entidades o comunidades involucradas; aquí cabe la posibilidad de un aprendizaje cooperativo, colectivo, y por supuesto, colaborativo donde se ha planteado como motivo de la situación problema planteada la unidad financiera llamada Belisol con el fin de exteriorizar los fundamentos de una acción formativa, orientada a la incursión en el ámbito de la educación matemática económica financiera, a través del ejercicio del ahorro escolar y el trueque, promoviendo de esta manera el espíritu solidario en la comunidad Benigniana.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we prove a weak Noether-type Theorem for a class of variational problems that admit broken extremals. We use this result to prove discrete Noether-type conservation laws for a conforming finite element discretisation of a model elliptic problem. In addition, we study how well the finite element scheme satisfies the continuous conservation laws arising from the application of Noether’s first theorem (1918). We summarise extensive numerical tests, illustrating the conservation of the discrete Noether law using the p-Laplacian as an example and derive a geometric-based adaptive algorithm where an appropriate Noether quantity is the goal functional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this paper is to extend the generalized variational problem of Herglotz type to the more general context of the Euclidean sphere S^n. Motivated by classical results on Euclidean spaces, we derive the generalized Euler-Lagrange equation for the corresponding variational problem defined on the Riemannian manifold S^n. Moreover, the problem is formulated from an optimal control point of view and it is proved that the Euler-Lagrange equation can be obtained from the Hamiltonian equations. It is also highlighted the geodesic problem on spheres as a particular case of the generalized Herglotz problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.