970 resultados para Variable speed driver
Resumo:
A new generator topology for microhydel power plants, capable of unsupervised operation, is proposed. While conventional microhydel plants operate at constant speed with switched ballast loads, the proposed generator, based on the wound rotor induction machine, operates at variable speed and does away with the need for ballast loads. This increases reliability and substantially decreases system costs and setup times. The proposed generator has a simplified decoupled control structure with stator-referenced voltage control similar to a conventional synchronous generator, and rotor-side frequency control that is facilitated by rotating electronics mounted on the rotor. While this paper describes an isolated plant, the topology can also be tailored for distributed generation enabling conversion of the available hydraulic power into useful electrical power when the grid is present, and supplying local loads in the event of grid outage.
Resumo:
Modern wind turbines are designed in order to work in variable speed opera-tions. To perform this task, these turbines are provided with adjustable speed generators, like the double feed induction generator (DFIG). One of the main advantages of adjustable speed generators is improving the system efficiency compared with _xed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However, this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. The proposed design also uses the vector oriented control theory in order to simplify the DFIG dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and pa-rameter uncertainties using the Lyapunov stability theory. Finally, the simulated results show on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, which usually appear in real systems.
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11
Resumo:
EFTA 2009
Resumo:
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities.
Resumo:
Power converters play a vital role in the integration of wind power into the electrical grid. Variable-speed wind turbine generator systems have a considerable interest of application for grid connection at constant frequency. In this paper, comprehensive simulation studies are carried out with three power converter topologies: matrix, two-level and multilevel. A fractional-order control strategy is studied for the variable-speed operation of wind turbine generator systems. The studies are in order to compare power converter topologies and control strategies. The studies reveal that the multilevel converter and the proposed fractional-order control strategy enable an improvement in the power quality, in comparison with the other power converters using a classical integer-order control strategy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel single-phase voltage source rectifier capable to achieve High-Power-Factor (HPF) for variable speed refrigeration system application, is proposed in this paper. The proposed system is composed by a single-phase high-power-factor boost rectifier, with two cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the EEC61000-3-2 standards. The digital controller for the output stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at a refrigerator prototype.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
The adaptation of a commercially available ice machine for autonomous photovoltaic operation without batteries is presented. In this adaptation a 1040 W(p) photovoltaic array directly feeds a variable-speed drive and a 24 V(dc) source. The drive runs an induction motor coupled by belt-and-pulley to an open reciprocating compressor, while the dc source supplies a solenoid valve and the control electronics. Motor speed and refrigerant evaporation pressure are set aiming at continuously matching system power demand to photovoltaic power availability. The resulting system is a simple integration of robust, standard, readily available parts. It produces 27 kg of ice in a clear-sky day and has ice production costs around US$0.30/kg. Although a few machine features might be specific to Brazil, its technical and economical guidelines are applicable elsewhere. Copyright (C); 2010 John Wiley & Sons, Ltd.
Resumo:
Several diagnostic techniques are presented for the detection of electrical fault in induction motor variable speed drives. These techinques are developed taking into account the impact of the control system on machine variables and non stationary operating conditions.