988 resultados para Vanadium(IV) complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferrocene-conjugated oxidovanadium(IV) complexes [VO(Fc-tpy)(B)](ClO4)(2) (1-4) and [VO(Ph-tpy)(dppz)](ClO4)(2) (5) as a control [Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5), Fc-tpy = 4'-ferrocenyl-2,2':6',2 `'-terpyridine, Ph-tpy = 4'-phenyl-2,2':6',2 `'-terpyridine, B = heterocyclic base: 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyridoquinoxaline (dpq in 3), dipyridophenazine (dppz in 4)] were prepared and their DNA binding, DNA photocleavage activity and photocytotoxicity studied. The crystal structure of [VO(Fc-tpy)(bpy)](PF6)(2)center dot 3Me(2)CO shows a vanadyl group in six-coordinate (VON5)-O-IV coordination geometry, in which Fc-tpy and bpy display tridentate meridional and bidentate N-donor axial-equatorial binding modes, respectively. The one-electron paramagnetic complexes exhibit a charge-transfer band near 590 nm in DMF. The V-IV/V-III redox couple in 1-4 appears near -0.7 V, whereas the Fc moiety shows a response near 0.6 V vs. SCE in DMF/0.1 M TBAP. The complexes are good binders to calf thymus DNA with K-b values of 10(4)-10(6) M-1. DNA melting and viscometric data suggest groove and/or partial intercalative DNA binding of the complexes. Complexes 3-5 display DNA photocleavage activity in nearIR light of 785 nm. Complex 4 shows significant photocytotoxicity in visible light (400-700 nm) in HeLa cells with low dark toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(pyphen)(L)]Cl2 (1, 2) and VO(pydppz)(L)]Cl2 (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of VO(pyphen)(phen)](ClO4)2 (1a) shows a six-coordinate VN5O geometry with a VO2+ moiety in which the polypyridyl ligand binds in a meridional fashion and the phen ligand displays a chelating binding mode with an N-donor site trans to the oxidovanadyl group. The complexes show a dd band within 720-750 nm in DMF. The one-electron paramagnetic complexes are 1:2 electrolytes in DMF. The complexes exhibit an irreversible VIV/VIII redox response near -0.85 V vs. SCE in DMF/0.1 M TBAP. The complexes bind to calf thymus (ct) DNA giving Kb values within 7.5 x 104 to 1.1 x 106 M1. The complexes show poor chemical nuclease activity in the dark and exhibit significant DNA-photocleaving activity in near-IR light of 705 and 785 nm forming .OH radicals. Complexes 2-4 show remarkable photocytotoxicity in HeLa cancer cells. FACS analysis of the HeLa cells treated with complex 4 shows cell death as highlighted by the sub G1 peak. Propidium iodide staining data indicate apoptosis as the primary mode of cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrenylterpyridine (pytpy) oxovanadium(IV) complexes VO(pytpy)(L)]Cl-2 (1-6) of the dipyridophenazine bases (L), viz., dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4), benzo-i]dipyrido3,2-a:2',3'-c]phenazine (dppn in 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 6) were prepared, characterized and their DNA binding, photocleavage activity and photocytotoxicity studied. The complexes which showed a d-d band near 750 nm in DMF are efficient binders to calf thymus DNA (K-b: 3.2 x 10(5)-2.9 x 10(6) M-1). The complexes showed significant pUC19 DNA cleavage in near-IR light of 785 nm forming center dot OH radicals and photocytotoxicity in HeLa cells in visible light with the benzo-i] dipyrido3,2-a:2',3'-c]phenazine complex 5 showing a remarkably low IC50 value of 0.036 mu M. Flow-cytometric analysis shows a high sub-G1 phase cell cycle arrest in HeLa cells by the complexes on photo-irradiation. The photocytotoxicity correlates well with the hydrophobicity, photosensitizing ability and DNA binding propensity of the complexes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadi um(IV) complexes VO(Fc-pic)(acac)](ClO4) (1), VO(Fc-pic)(cur)](ClO4) (2), VO(Ph-pic)(acac)](ClO4) (3) and VO(Ph-pic)(cur)](ClO4) (4), where Fc-pic and Ph-pic are ferrocenylmethyl-bis-(2-pyridylmethylamine) (in 1, 2) and bis-(2-pyridylmethyl)benzylamine (in 3, 4), respectively, acac is acetylacetonate anion (in 1, 3) and cur is curcumin anion (in 2, 4) were prepared, characterized and their photo-induced DNA cleavage and anticancer activity studied. The crystal structure of 1 as its PF6 salt (1a) shows the presence of a VO2+ moiety in VO3N3 coordination geometry. The complexes show a d-d band at similar to 790 nm in DMF and display V(IV)/V(III) redox couple near -1.45 V vs. SCE in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA. Complex 2 efficiently photo-cleaves plasmid DNA in near-IR light of 785 nm forming (OH)-O-center dot radicals. The curcumin complexes show photocytotoxicity in HeLa cancer cells in visible light of 400-700 nm with significant cellular uptake within 4 h of incubation time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three highly stable, hexacoordinated nonoxidovanadium(IV), V-IV(L)(2), complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 mu M, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the He La cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(aip)(L)](ClO4)(2) (L = phtpy, 1; stpy, 2) and VO(pyip)(L)](ClO4)(2) (L = phtpy, 3; stpy, 4), where aip is 2-(9-anthryl)-1H-imidazo4,5-f]1,10] phenanthroline, pyip is 2-(1-pyrenyl)-1Himidazo4,5-f]1,10] phenanthroline, phtpy is (4'-phenyl)-2,2': 6',2 `'-terpyridine and stpy is (2,2': 6', 2 `'-terpyridin-4'-oxy) ethyl-beta-D-glucopyranoside, were prepared, characterized and their DNA binding and photocleavage activity, cellular uptake and photocytotoxicity in visible light were studied. The complexes are avid binders to calf thymus DNA (K-b similar to 10(5) mol(-1)). They efficiently cleave pUC19 DNA in red light of 705 nm via the formation of HO center dot species. The glucose appended complexes 2 and 4 showed higher photocytotoxicity in HeLa and Hep G2 cells over the normal HEK 293T cells. No such preference was observed for the phtpy complexes 1 and 3. No significant difference in IC50 values was observed for the HEK 293T cells. Cell cycle analysis showed that the glucose appended complexes 2 and 4 are more photocytotoxic in cancer cells than in normal cells. Fluorescence microscopy was done to study the cellular localization of complex 4 having a pendant pyrenyl group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(py-aebmz)(B)]Cl (1, 2) and VO(napth-py-aebmz)(cur)]Cl 3; py-aebmz = 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethanamine, HB = acetylacetone (Hacac, 1) and curcumin (Hcur, 2), napth-py-aebmz = naphthalimide conjugated to py-aebmz ] have been prepared, characterized and their photoinduced DNA cleavage activities and photocytotoxicities studied. Complexes 1-3 each exhibited an irreversible cyclic voltammetric response of the V-IV/V-III redox couple at around -0.85 V versus SCE in dmf/0.1 M tbap. The complexes showed DNA photocleavage activity in visible light of 454, 530 and 647 nm through hydroxyl radical and singlet oxygen pathways. Fluorescence microscopy data suggest mitochondrial localization of complex 3 bearing a naphthalimide with a two-fold increase in photocytotoxicity in HaCaT cells with an IC50 value of 6.3 M and a three-fold increase in MCF-7 cells with an IC50 of 5.4 M compared with complex 2. Both 2 and 3 were non-toxic in the dark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes, VO(acac)(L)Cl] (1), VO(cur)(L)Cl] (2), and VO(scur)(L)Cl] (3) {acac = acetylacetonate, cur = curcumin monoanion, scur = diglucosylcurcumin monoanion, L = 11-(9-acridinyl)dipyrido3, 2-a:2',3'-c]phenazine (acdppz)}, were prepared and characterized. The complexes are non-electrolytic in DMF and 1:1 electrolytic in aqueous DMF. The one-electron paramagnetic complexes showed a d-d band near 725 nm in aqueous DMF and green emission near 520 nm in aqueous DMSO. The complexes exhibited an irreversible V-IV/V-III redox response near -0.85 V versus SCE in aqueous DMF. The complexes showed good binding strengths to calf thymus DNA (K-b: 3.1x10(5)-9.6x10(5) M-1) and efficient pUC19 DNA photocleavage activity in red light of 705 and 785 nm by singlet oxygen (O-1(2)) pathway. Complexes 1 and 2 exhibited significant photocytotoxicity (IC50: 0.1-1.0 M) in visible light (400-700 nm) with low dark toxicity (IC50: >20 M) in HeLa and HaCaT cells. Complex 3 was cytotoxic in both light and dark. DNA ladder formation experiments indicated cell death via apoptotic pathway. Confocal microscopy done with 1 and 2 revealed primarily cytosolic localization of the complexes with significant presence of the complex in the mitochondria as evidenced from the imaging data using mitotracker red.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(R-tpy)(cur)](ClO4) (1, 2) of curcumin (Hcur) and terpyridine ligands (R-tpy) where R is phenyl (phtpy in 1) or p-triphenylphosphonium methylphenyl bromide (C6H4CH2PPh3Br) (TPP-phtpy in 2) were prepared and characterized and their DNA photocleavage activity, photocytotoxicity and cellular localization in cancer cells (HeLa and MCF-7) were studied. Acetylacetonate (acac) complexes VO(R-tpy)(acac)](ClO4) of phtpy (3) and TPP-phtpy (4) were prepared and used as the control species. These complexes showed efficient cleavage of pUC19 DNA in visible light of 454 nm and near-IR light of 705 rim. Complexes 1 and 2 showed significant photocytotoxicity in visible light of 400-700 nm. FACS analysis showed sub-G1/G0 phase cell-cycle arrest in cancer cells when treated with 1 and 2 in visible light in comparison with the dark controls. Fluorescence microscopic studies revealed specific localization of the p-triphenylphosphonium complex 2 in the mitochondria of MCF-7 cancer cells whereas no such specificity was observed for complex 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes, viz. VO(Fc-tpy)(Curc)](ClO4) (1), VO(Fc-tpy)(bDHC)](ClO4) (2), VO(Fc-tpy)(bDMC)](ClO4) (3) and VO(Ph-tpy)(Curc)](ClO4) (4), of 4'-ferrocenyl-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) and monoanionic curcumin (Curc), bis-dehydroxycurcmin (bDHC) and bis-demethoxycurcumin (bDMC) were prepared, characterized and their photo-induced DNA cleavage activity and photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense metal-to-ligand charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.65 V and -1.05 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in red light of 647 nm forming (OH)-O-center dot radicals. The complexes showed photocytotoxicity in HeLa and Hep G2 cancer cells in visible light of 400-700 nm with low dark toxicity. ICP-MS and fluorescence microscopic studies exhibited significant cellular uptake of the complexes within 4 h of treatment with complexes. The treatment with complex 1 resulted in the formation of reactive oxygen species inside the HeLa cells which was evidenced from the DCFDA assay. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(Fc-tpy)(acac)](ClO4) (1), VO(Fc-tpy)(nap-acac)](ClO4) (2), VO(Fc-tpy)(py-acac)](ClO4) (3) and VO(Ph-tpy)(py-acac)](ClO4) (4) of 4'-ferroceny1-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) having monoanionic acetylacetonate (acac), naphthylacetylacetonate (nap-acac) or pyrenylacetylacetonate (py-acac) ligand were prepared, characterized and their photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.66 V and -0.95 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in green light (568 nm) forming center dot OH radicals. The complexes that are photocytotoxic in HeLa and MCF-7 cancer cells in visible light (400-700 nm) with low dark toxicity remain nontoxic in normal fibroblast 3T3 cells. ICP-MS and fluorescence microscopic studies show significant cellular uptake of the complexes. Photo-irradiation of the complexes causes apoptotic cell death by ROS as evidenced from the DCFDA assay. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(pyphen)Cl-2] (1) and VO(pydppz)Cl-2] (2), where pyphen is 2-(2-pyridyl)-1,10-phenanthroline and pydppz is 3-(pyridin-2-yl)dipyrido3,2-a:2,3-c]phenazine, show remarkable photoinduced DNA crosslinking ability and photocytotoxicity. The complexes are non-electrolytes in DMF, 1:1 electrolytes in 20% aqueous DMF, and 1:2 electrolytes in 20% aqueous DMF upon photoirradiation with visible light of 400-700 nm. The paramagnetic complexes, which have one unpaired electron, show a d-d band near 780 nm in aqueous DMF. The IR data suggest a V=O moiety trans to a V-N bond. Complex VO(pydppz)Cl-2] (2), as a novel photoinducible nuclear ds-DNA crosslinking agent, shows visible-light-induced cytotoxicity in HeLa and MCF-7 cancer cells by an apoptotic pathway, giving IC50 values of 0.87 +/- 0.07 and 1.4 +/- 0.2 M, respectively, while being essentially nontoxic (IC50 > 40 M) in the dark and less toxic in normal MCF-10A cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).