348 resultados para Valorization
Resumo:
The main goal of this special issue was to gather contributions dealing with the latest breakthrough methods for providing value compounds and energy/fuel from waste valorization. Valorization is a relatively new approach in the area of industrial wastes management, a key issue to promote sustainable development. In this field, the recovery of value-added substances, such as antioxidants, proteins, vitamins, and so forth, from the processing of agroindustrial byproducts, is worth mentioning. Another important valorization approach is the use of biogas from waste treatment plants for the production of energy. Several approaches involving physical and chemical processes, thermal and biological processes that ensure reduced emissions and energy consumptions were taken into account. The papers selected for this topical issue represent some of the mostly researched methods that currently promote the valorization of wastes to energy and useful materials ...
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed
Resumo:
In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Agricultural and agro-industrial residues are often considered both an environmental and an economical problem. Therefore, a paradigm shift is needed, assuming residues as biorefinery feedstocks. In this work cherimoya (Annona cherimola Mill.) seeds, which are lipid-rich (ca. 30%) and have a significant lignocellulosic fraction, were used as an example of a residue without any current valorization. Firstly, the lipid fraction was obtained by solvent extraction. Extraction yield varied from 13% to 28%, according to the extraction method and time, and solvent purity. This oil was converted into biodiesel (by base-catalyzed transesterification), yielding 76 g FAME/100 g oil. The obtained biodiesel is likely to be incorporated in the commercial chain, according to the EN14214 standard. The remaining lignocellulosic fraction was subjected to two alternative fractionation processes for the selective recovery of hemicellulose, aiming different products. Empirical mathematical models were developed for both processes, aiming future scale-up. Autohydrolysis rendered essentially oligosaccharides (10 gL-1) with properties indicating potential food/feed/pharmacological applications. The remaining solid was enzymatically saccharified, reaching a saccharification yield of 83%. The hydrolyzate obtained by dilute acid hydrolysis contained mostly monosaccharides, mainly xylose (26 gL-1), glucose (10 gL-1) and arabinose (3 gL-1), and had low content of microbial growth inhibitors. This hydrolyzate has proven to be appropriate to be used as culture media for exopolisaccharide production, using bacteria or microbial consortia. The maximum conversion of monosaccharides into xanthan gum was 0.87 g/g and kefiran maximum productivity was 0.07 g.(Lh)-1. This work shows the technical feasibility of using cherimoya seeds, and materials as such, as potential feedstocks, opening new perspectives for upgrading them in the biorefinery framework.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This research work is aimed at the valorization of two types of pomace deriving from the extra virgin olive oil mechanical extraction process, such as olive pomace and a new by-product named “paté”, in the livestock sector as important sources of antioxidants and unsaturated fatty acids. In the first research the suitability of dried stoned olive pomace as a dietary supplement for dairy buffaloes was evaluated. The effectiveness of this utilization in modifying fatty acid composition and improving the oxidative stability of buffalo milk and mozzarella cheese have been proven by means of the analysis of qualitative and quantitative parameters. In the second research the use of paté as a new by-product in dietary feed supplementation for dairy ewes, already fed with a source of unsaturated fatty acids such as extruded linseed, was studied in order to assess the effect of this combination on the dairy products obtained. The characterization of paté as a new by-product was also carried out, studying the optimal conditions of its stabilization and preservation at the same time. The main results, common to both researches, have been the detection and the characterization of hydrophilic phenols in the milk. The analytical detection of hydroxytyrosol and tyrosol in the ewes’ milk fed with the paté and hydroxytyrosol in buffalo fed with pomace showed for the first time the presence in the milk of hydroxytyrosol, which is one of the most important bioactive compounds of the oil industry products; the transfer of these antioxidants and the proven improvement of the quality of milk fat could positively interact in the prevention of some human cardiovascular diseases and some tumours, increasing in this manner the quality of dairy products, also improving their shelf-life. These results also provide important information on the bioavailability of these phenolic compounds.
Resumo:
La tesi della ha come obiettivo la valorizzazione delle acque di scarto derivanti dalla produzione del bioetanolo da colture cerealicole dedicate. Nella prima parte si studia la produzione di VFA mediante digestione anaerobica. In seguito, sono eseguiti batch tests per valutare la conversione dei VFA in MCFA. Infine, si focalizza sul processo di dowstream per il recupero degli acidi carbossilici dal brodo di fermentazione attraverso reactive extraction e back extraction.
Development of a biorefinery scheme for the valorization of olive mill wastewaters and grape pomaces
Resumo:
In the Mediterranean area, olive mill wastewater (OMW) and grape pomace (GP) are among the major agro-industrial wastes produced. These two wastes have a high organic load and high phytotoxicity. Thus, their disposal in the environment can lead to negative effects. Second-generation biorefineries are dedicated to the valorization of biowaste by the production of goods from such residual biomasses. This approach can combine bioremediation approaches to the generation of noble molecules, biomaterials and energy. The main aim of this thesis work was to study the anaerobic digestion of OMW and GP under different operational conditions to produce volatile fatti acids (VFAs) (first stage aim) and CH4 (second stage aim). To this end, a packed-bed biofilm reactor (PBBR) was set up to perform the anaerobic acidogenic digestion of the liquid dephenolized stream of OMW (OMWdeph). In parallel, the solid stream of OMW (OMWsolid), previously separated in order to allow the solid phase extraction of polyphenols, was addressed to anaerobic methanogenic digestion to obtain CH4. The latter experiment was performed in 100ml Pyrex bottles which were maintained at different temperatures (55-45-37°C). Together with previous experiments, the anaerobic acidogenic digestion of fermented GP (GPfreshacid) and dephenolized and fermented GP (GPdephacid) was performed in 100ml Pyrex bottles to estimate the concentration of VFAs achievable from each aforementioned GPs. Finally, the same matrices of GP and not pre-treated GP (GPfresh) were digested under anaerobic methanogenic condition to produce CH4. Anaerobic acidogenic and methanogenic digestion processes of GPs lasted about 33 days. Instead, the anaerobic acidogenic and methanogenic digestion process of OMWs lasted about 121 and 60 days, respectively. Each experiment was periodically monitored by analysing volume and composition of produced biogas and VFA concentration. Results showed that VFAs were produced in higher concentrations in GP compared to OMWdeph. The overall concentration of VFAs from GPfreshacid was approximately 39.5 gCOD L-1, 29 gCOD L-1 from GPdephacid, and 8.7 gCOD L-1 from OMWdeph. Concerning the CH4 production, the OMWsolid reached a high biochemical methane potential (BMP) at a thermophilic temperature (55°) than at mesophlic ones (37-45°C). The value reached was about 358.7 mlCH4 gSVsub-1. In contrast, GPfresh got a high BMP but at a mesophilic temperature. The BMP was about 207.3 mlCH4 gSVsub-1, followed by GPfreshacid with about 192.6 mlCH4 gSVsub-1 and lastly GPdephacid with about 102.2 mlCH4 gSVsub-1. In summary, based on the gathered results, GP seems to be a better carbon source for acidogenic and methanogenic microrganism compared to OMW, because higher amount of VFAs and CH4 were produced in AD of GP than OMW. In addition to these products, polyphenols were extracted by means of a solid phase extraction (SPE) procedure by another research group, and VFAs were utilised for biopolymers production, in particular polyhydroxyalkanoates (PHAs), by the same research group in which I was involved.
Resumo:
In the Peruvian Andes, a long history of interaction between the local populations and their natural environment has led to extraordinary levels of agrobiodiversity. However, in sharp contrast with this biological wealth, Andean indigenous populations live under most precarious conditions. Moreover, natural resources are undergoing severe degradation processes and local knowledge about biodiversity management is under serious pressure. Against this background, the BioAndes Programme is developing initiatives based on a biocultural approach that aim at fostering biodiversity through the enhancement of cultural processes. On the basis of intercultural dialogue, joint learning and capacity development, and transdisciplinary action-research, indigenous communities, development practitioners, and researchers strive for the creation of innovative ways to contribute to more sustainable economic, socio-cultural, and political valorization of Andean biodiversity. Project activities are diverse and range from the cultivation, transformation, and commercialization of organic Andean fruits in San Marcos, Cajamarca Department, to the recuperation of natural dying techniques for alpaca wool and traditional weaving in Pitumarca, Cusco Department, and the promotion of responsible ecotourism in both regions. Based on the projects’ first two-years of experience, the following lessons learnt will be presented and discussed: 1. The economic valorization and commercialization of local products can be a powerful tool for the revival and innovation of eroded know-how; at the same time it contributes to the strengthening of local identities, in parallel with the empowerment of marginalized groups such as smallholders and women. 2. Such initiatives are only successful when they are embedded within activities that go beyond the focus on local products and seek the valorization of the entire natural and cultural landscape (e.g. through the promotion of agrotourism and local gastronomy, more sustainable management of local resources including the restoration of ecosystems, and the realization of inventories of local agrobiodiversity and the knowledge related to it). 3. The sustainability of these initiatives, which are often externally induced, is conditioned by the ability of local actors to acquire ownership of projects and access to the knowledge required to carry them out, which also means developing the personal and institutional capacities for handling the whole chain from production to commercialization. 4. The confrontation of different economic rationalities and their underlying worldviews that occur when local or indigenous people integrate into the market economy implies the need for a dialogical co-production of knowledge and collective action by local people, experts from NGOs, and political authorities in order to better control the conditions relating to the market economy. The valorization of local agrobiodiversity shows much potential for enhancing natural and cultural diversity in Southern countries, but only when local communities can participate in the shaping of the conditions under which this happens. Such activities should be designed in the mid- to long-term as part of social learning processes that are carefully embedded in the local context. Supporting institutions play a crucial role in these processes, but should see themselves only as facilitators, while ensuring that control and ownership remain with the local actors.