932 resultados para VISUAL DETECTION
Resumo:
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
A simple, rapid and ultrasensitive colorimetric detection of protein using aptamer-Au nanoparticles (AuNPs) conjugates based on a dot-blot array has been developed, which was combined with the unique optical properties of AuNPs, enabling the visual detection of protein within minutes without any instrument.
Resumo:
Hg2+ is able to inhibit the peroxidase-like DNAzyme function of a T-containing G-quadruplex DNA via Hg2+-mediated T-T base pairs, which enables the visual detection of Hg2+ in the TMB-H2O2 reaction system with high selectivity and sensitivity.
Resumo:
The Mismatch Negativity (MMN) has been characterised as a ‘pre-attentive’ component of an Event-Related Potential (ERP) that is related to discriminatory processes. Although well established in the auditory domain, characteristics of the MMN are less well characterised in the visual domain. The five main studies presented in this thesis examine visual cortical processing using event-related potentials. Novel methodologies have been used to elicit visual detection and discrimination components in the absence of a behavioural task. Developing paradigms in which a behavioural task is not required may have important clinical applications for populations, such as young children, who cannot comply with the demands of an active task. The ‘pre-attentive’ nature of visual MMN has been investigated by modulating attention. Generators and hemispheric lateralisation of visual MMN have been investigated by using pertinent clinical groups. A three stimulus visual oddball paradigm was used to explore the elicitation of visual discrimination components to a change in the orientation of stimuli in the absence of a behavioural task. Monochrome stimuli based on pacman figures were employed that differed from each other only in terms of the orientation of their elements. One such stimulus formed an illusory figure in order to capture the participant’s attention, either in place of, or alongside, a behavioural task. The elicitation of a P3a to the illusory figure but not to the standard or deviant stimuli provided evidence that the illusory figure captured attention. A visual MMN response was recorded in a paradigm with no task demands. When a behavioural task was incorporated into the paradigm, a P3b component was elicited consistent with the allocation of attentional resources to the task. However, visual discrimination components were attenuated revealing that the illusory figure was unable to command all attentional resources from the standard deviant transition. The results are the first to suggest that the visual MMN is modulated by attention. Using the same three stimulus oddball paradigm, generators of visual MMN were investigated by recording potentials directly from the cortex of an adolescent undergoing pre-surgical evaluation for resection of a right anterior parietal lesion. To date no other study has explicitly recorded activity related to the visual MMN intracranially using an oddball paradigm in the absence of a behavioural task. Results indicated that visual N1 and visual MMN could be temporally and spatially separated, with visual MMN being recorded more anteriorly than N1. The characteristic abnormality in retinal projections in albinism afforded the opportunity to investigate each hemisphere in relative isolation and was used, for the first time, as a model to investigate lateralisation of visual MMN and illusory contour processing. Using the three stimulus oddball paradigm, no visual MMN was elicited in this group, and so no conclusions regarding the lateralisation of visual MMN could be made. Results suggested that both hemispheres were equally capable of processing an illusory figure. As a method of presenting visual test stimuli without conscious perception, a continuous visual stream paradigm was developed that used a briefly presented checkerboard stimulus combined with masking for exploring stimulus detection below and above subjective levels of perception. A correlate of very early cortical processing at a latency of 60-80 ms (CI) was elicited whether stimuli were reported as seen or unseen. Differences in visual processing were only evident at a latency of 90 ms (CII) implying that this component may represent a correlate of visual consciousness/awareness. Finally, an oddball sequence was introduced into the visual stream masking paradigm to investigate whether visual MMN responses could be recorded without conscious perception. The stimuli comprised of black and white checkerboard elements differing only in terms of their orientation to form an x or a +. Visual MMN was not recorded when participants were unable to report seeing the stimulus. Results therefore suggest that behavioural identification of the stimuli was required for the elicitation of visual MMN and that visual MMN may require some attentional resources. On the basis of these studies it is concluded that visual MMN is not entirely independent of attention. Further, the combination of clinical and non-clinical investigations provides a unique opportunity to study the characterisation and localisation of putative mechanisms related to conscious and non-conscious visual processing.
Resumo:
The neuropsychological phenomenon of blindsight has been taken to suggest that the primary visual cortex (V1) plays a unique role in visual awareness, and that extrastriate activation needs to be fed back to V1 in order for the content of that activation to be consciously perceived. The aim of this review is to evaluate this theoretical framework and to revisit its key tenets. Firstly, is blindsight truly a dissociation of awareness and visual detection? Secondly, is there sufficient evidence to rule out the possibility that the loss of awareness resulting from a V1 lesion simply reflects reduced extrastriate responsiveness, rather than a unique role of V1 in conscious experience? Evaluation of these arguments and the empirical evidence leads to the conclusion that the loss of phenomenal awareness in blindsight may not be due to feedback activity in V1 being the hallmark awareness. On the basis of existing literature, an alternative explanation of blindsight is proposed. In this view, visual awareness is a “global” cognitive function as its hallmark is the availability of information to a large number of perceptual and cognitive systems; this requires inter-areal long-range synchronous oscillatory activity. For these oscillations to arise, a specific temporal profile of neuronal activity is required, which is established through recurrent feedback activity involving V1 and the extrastriate cortex. When V1 is lesioned, the loss of recurrent activity prevents inter-areal networks on the basis of oscillatory activity. However, as limited amount of input can reach extrastriate cortex and some extrastriate neuronal selectivity is preserved, computations involving comparison of neural firing rates within a cortical area remain possible. This enables “local” read-out from specific brain regions, allowing for the detection and discrimination of basic visual attributes. Thus blindsight is blind due to lack of “global” long-range synchrony, and it functions via “local” neural readout from extrastriate areas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
Several non-invasive and novel aids for the detection of (and in some cases monitoring of) caries lesions have been introduced in the field of 'caries diagnostics' over the last 15 years. This chapter focusses on those available to dentists at the time of writing; continuing research is bound to lead to further developments in the coming years. Laser fluorescence is based on measurements of back-scattered fluorescence of a 655-nm light source. It enhances occlusal and (potentially) approximal lesion detection and enables semi-quantitative caries monitoring. Systematic reviews have identified false-positive results as a limitation. Quantitative light-induced fluorescence is another sensitive method to quantitatively detect and measure mineral loss both in enamel and some dentine lesions; again, the trade-offs with lower specificity when compared with clinical visual detection must be considered. Subtraction radiography is based on the principle of digitally superimposing two radiographs with exactly the same projection geometry. This method is applicable for approximal surfaces and occlusal caries involving dentine but is not yet widely available. Electrical caries measurements gather either site-specific or surface-specific information of teeth and tooth structure. Fixed-frequency devices perform best for occlusal dentine caries but the method has also shown promise for lesions in enamel and other tooth surfaces with multi-frequency approaches. All methods require further research and further validation in well-designed clinical trials. In the future, they could have useful applications in clinical practice as part of a personalized, comprehensive caries management system.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
As it is known, there are five types of neurons in the mammalian retinal layer allowing the detection of several important characteristics of the visual image impinging onto the visual system, namely, photoreceptors, horizontal cells, amacrine, bipolar and ganglion cells. And it is a well known fact too, that the amacrine neuron architecture allows a first detection for objects motion, being the most important retinal cell to this function. We have already studied and simulated the Dowling retina model and we have verified that many complex processes in visual detection is performed with the basis of the amacrine cell synaptic connections. This work will show how this structure may be employed for motion detection
Resumo:
Failure to give way by motor vehicles is a factor in many collisions with both powered and unpowered two wheelers (TWs). Motor vehicle drivers often report that they did not see the TW, but research has shown that motor vehicle drivers who have experience riding a motorcycle are less likely to fail to detect motorcycles. The research reported here examines whether this phenomenon extends to detection of bicycles and whether car drivers who have experience with one mode of TW show improved detection of the other mode. A driving simulator study was conducted in an Australian urban setting which incorporated some of the most common car-TW crash scenarios. Participants with car-only, car plus motorcycle, car plus bicycle, and car plus bicycle plus motorcycle experience operated a car simulator. Their interactions with both types of TWs were measured in terms of visual detection, lateral distance and speed when approaching and passing. The effects of different levels of colour and lighting of the TWs on driver responses were also examined. The attitudes of participants towards TWs were measured in a questionnaire.
Resumo:
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Resumo:
This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (PROgraMme for European Traffic flow with Highest Efficiency and Unprecedented Safety) research programme to achieve an intelligent driver warning system (IDWS). The IDWS includes: visual detection of both generic obstacles and other vehicles, together with their tracking and identification, estimates of time to collision and behavioural modelling of drivers for a variety of scenarios. These application areas are used to show the applicability of neurofuzzy techniques to the wide range of problems required to support an IDWS, and for future fully autonomous vehicles.