978 resultados para VISUAL DEFICITS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Flickering stimuli increase the metabolic demand of the retina,making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from to acute, mild systemic hypoxia when compared to standard static perimetry. Methods: Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results: Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion: Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation, are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.
Resumo:
Objective: Older driver research has mostly focused on identifying that small proportion of older drivers who are unsafe. Little is known about how normal cognitive changes in aging affect driving in the wider population of adults who drive regularly. We evaluated the association of cognitive function and age, with driving errors. Method: A sample of 266 drivers aged 70 to 88 years were assessed on abilities that decline in normal aging (visual attention, processing speed, inhibition, reaction time, task switching) and the UFOV® which is a validated screening instrument for older drivers. Participants completed an on-road driving test. Generalized linear models were used to estimate the associations of cognitive factor with specific driving errors and number of errors in self-directed and instructor navigated conditions. Results: All errors types increased with chronological age. Reaction time was not associated with driving errors in multivariate analyses. A cognitive factor measuring Speeded Selective Attention and Switching was uniquely associated with the most errors types. The UFOV predicted blindspot errors and errors on dual carriageways. After adjusting for age, education and gender the cognitive factors explained 7% of variance in the total number of errors in the instructor navigated condition and 4% of variance in the self-navigated condition. Conclusion: We conclude that among older drivers errors increase with age and are associated with speeded selective attention particularly when that requires attending to the stimuli in the periphery of the visual field, task switching, errors inhibiting responses and visual discrimination. These abilities should be the target of cognitive training.
Resumo:
By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visual-tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visual-tactile) than unimodal (visual-visual or tactile-tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visual-tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices.
Resumo:
Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.
Resumo:
Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.
Resumo:
My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions.
Resumo:
Demersal fishes hauled up from depth experience rapid decompression. In physoclists, this can cause overexpansion of the swim bladder and resultant injuries to multiple organs (barotrauma), including severe exophthalmia (“pop-eye”). Before release, fishes can also be subjected to asphyxia and exposure to direct sunlight. Little is known, however, about possible sensory deficits resulting from the events accompanying capture. To address this issue, electroretinography was used to measure the changes in retinal light sensitivity, flicker fusion frequency, and spectral sensitivity in black rockfish (Sebastes melanops) subjected to rapid decompression (from 4 atmospheres absolute [ATA] to 1 ATA) and Pacific halibut (Hippoglossus stenolepis) exposed to 15 minutes of simulated sunlight. Rapid decompression had no measurable influence on retinal function in black rockfish. In contrast, exposure to bright light significantly reduced retinal light sensitivity of Pacific halibut, predominately by affecting the photopigment which absorbs the green wavelengths of light (≈520–580 nm) most strongly. This detriment is likely to have severe consequences for postrelease foraging success in green-wavelength-dominated coastal waters. The visual system of Pacific halibut has characteristics typical of species adapted to low light environments, and these characteristics may underlie their vulnerability to injury from exposure to bright light.
Resumo:
In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.
Resumo:
Primary Objective: To investigate the utility of using a new method of assessment for deficits in selective visual attention (SVA). Methods and Procedures: An independent groups design compared six participants with brain injuries with six participants from a non-brain injured control group. The Sensomotoric Instruments Eye Movement system with remote eye-tracking device (eye camera), and 2 sets of eight stimuli were employed to determine if the camera would be a sensitive discriminator of SVA in these groups. Main Outcomes and Results: The attention profile displayed by the brain injured group showed that they were slower, made more errors, were less accurate, and more indecisive than the control group. Conclusions: The utility of eye movement analysis as an assessment method was established, with implications for rehabilitation requiring further development. Key words: selective visual attention, eye movement analysis, brain injury
Resumo:
To examine the relationship between short-wavelength-sensitive (SWS) resolution acuity and epidemiologically defined stages of early age-related maculopathy (ARM).
Resumo:
Previous work has suggested that there are specific deficits in dorsal stream processing in a variety of developmental disorders. Prader-Willi syndrome (PWS) is associated with two main genetic subtypes, deletion and disomy. Relative strengths in visual processing are shown in PWS, although these strengths may be specific to the deletion subtype. We investigated visual processing in PWS using an adapted Simon task which contrasted location (dorsal stream) and shape identity (ventral stream) tasks. Compared to a group of typically developing children, children with PWS deletion showed a greater degree of impairment in the dorsal stream task than in the ventral stream task, a pattern similar to that shown in a group of boys with Fragile-X syndrome. When matched on a measure of non-verbal ability, children with PWS disomy showed the opposite pattern with better performance in the location compared to the shape task, although these task performance asymmetries may have been linked to executive control processes. It is proposed that children with PWS deletion show a relative strength in visual processing in the ventral stream along with a specific deficit in dorsal stream processing. In contrast, children with PWS disomy show neither effect. (C) 2009 Published by Elsevier Ltd.
Resumo:
Deficits in sensitivity to visual stimuli of low spatial frequency and high temporal frequency (so-called frequency-doubled gratings) have been demonstrated both in schizophrenia and in autism spectrum disorder (ASD). Such basic perceptual functions are ideal candidates for molecular genetic study, because the underlying neural mechanisms are well characterized; but they have sometimes been overlooked in favor of cognitive and neurophysiological endophenotypes, for which neural substrates are often unknown. Here, we report a genome-wide association study of a basic visual endophenotype associated with psychological disorder. Sensitivity to frequency-doubled gratings was measured in 1060 healthy young adults, and analyzed for association with genotype using linear regression at 642758 single nucleotide polymorphism (SNP) markers. A significant association (P=7.9×10) was found with the SNP marker rs1797052, situated in the 5′-untranslated region of PDZK1; each additional copy of the minor allele was associated with an increase in sensitivity equivalent to more than half a standard deviation. A permutation procedure, which accounts for multiple testing, showed that the association was significant at the α=0.005 level. The region on chromosome 1q21.1 surrounding PDZK1 is an established susceptibility locus both for schizophrenia and for ASD, mirroring the common association of the visual endophenotype with the two disorders. PDZK1 interacts with N-methyl-d-aspartate receptors and neuroligins, which have been implicated in the etiologies of schizophrenia and ASD. These findings suggest that perceptual abnormalities observed in two different disorders may be linked by common genetic elements. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were used within each channel (gain 1 and 1.6). ASD participants showed greater postural sway when information from proprioceptive and both channels were inaccurate. In addition, control participants' ellipse area at gain 1.6 was identical to ASD participants' at gain 1, reflecting hyper-reactivity in ASD. Our results provide evidence for hyper-reactivity in posture-related sensory information, which reflects a general, rather than channel-specific sensory integration impairment in ASD.
Resumo:
Introduction: Visuoperceptual deficits frequently occur after a stroke but little is known about how they evolve over time. These deficits may have an impact on participation in daily activities and social roles. Objectives: The aims were to 1) track changes over six months in the visual perception of older adults with persistent visuoperceptual deficits after a stroke; 2) examine if these changes differed between participants who had and had not received rehabilitation services; and 3) verify if participation differed between participants with and without visuoperceptual deficits. Methods: Visual perception as well as participation of 189 older adults who had had a stroke were evaluated in the first month (T1) after being discharged home from an acute care hospital (NO REHAB group) or rehabilitation unit (REHAB group). For visual perception, only participants presenting deficits at T1 were re-evaluated at 3 months (T2; n=93), and those with deficits at T2 were re-evaluated at 6 months (T3; n=61). Results: A total of 57 people (30.2%) had visuoperceptual deficits six months after discharge home. Despite persistent deficits, approximately 45% of the participants in the two groups improved while 50% of the NO REHAB group and 24.3% of the REHAB group deteriorated. Changes in the mean scores on the MVPT-V were similar in the two groups. Participation, and especially participation in social roles, was more restricted in participants with visuoperceptual deficits (p<0.001), whatever the severity of the stroke. Conclusion: Visuoperceptual deficits are common post-stroke. However, they evolve differently in different people and are associated with a reduction in participation.