967 resultados para VASCULAR DISEASES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJETIVO: Estudar prospectivamente a freqüência de complicações em pacientes tratados com warfarina e acompanhados no Ambulatório de Anticoagulação da Faculdade de Medicina de Botucatu da Universidade Estadual Paulista. MÉTODOS: Pacientes sorteados entre os agendados para consulta de junho de 2002 a fevereiro de 2004. Na primeira consulta, foi preenchida ficha com dados de identificação e clínicos. A cada retorno, ou quando o paciente procurou o hospital por intercorrência, foi preenchida ficha com a razão normatizada internacional, existência e tipo de intercorrência e condições de uso dos antagonistas da vitamina K. RESULTADOS: Foram acompanhados 136 pacientes (61 homens e 75 mulheres), 99 com tromboembolismo venoso e 37 com doença arterial; 59 pacientes eram de Botucatu, e 77, de outros municípios. Foram registradas 30 intercorrências: nove não relacionadas ao uso da warfarina e 21 complicações hemorrágicas (38,8 por 100 pacientes/ano). Uma hematêmese foi considerada grave (1,9 por 100 pacientes/ano). As demais foram consideradas moderadas ou leves. Não houve óbitos, hemorragia intracraniana ou necrose cutânea. A única associação significante foi da freqüência de hemorragia com nível médio de razão normatizada internacional. CONCLUSÃO: Nossos resultados mostram a viabilidade desse tratamento em pacientes vasculares em nosso meio, mesmo em população de baixo nível socioeconômico, quando tratados em ambulatório especializado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growing evidence suggests a prominent role of the complement system in the pathogenesis of cardio- and cerebrovascular diseases (CVD). Mannan-binding lectin-associated serine proteases (MASPs) MASP-1 and MASP-2 of the complement lectin pathway contribute to clot formation and may represent an important link between inflammation and thrombosis. MBL-associated protein MAp44 has shown cardioprotective effects in murine models. However, MAp44 has never been measured in patients with CVD and data on MASP levels in CVD are scarce. Our aim was to investigate for the first time plasma levels of MAp44 and MASP-1, -2, -3 concomitantly in patients with CVD. We performed a pilot study in 50 healthy volunteers, in stable coronary artery disease (CAD) patients with one-vessel (n = 51) or three-vessel disease (n = 53) and age-matched controls with normal coronary arteries (n = 53), 49 patients after myocardial infarction (MI) and 66 patients with acute ischaemic stroke. We measured MAp44 and MASP-1 levels by in-house time-resolved immunofluorometric assays. MASP-2 and MASP-3 levels were measured using commercial enzyme-linked immunosorbent assay kits. MASP-1 levels were highest in subacute MI patients and lowest in acute stroke patients. MASP-2 levels were lower in MI and stroke patients compared with controls and CAD patients. MASP-3 and MAp44 levels did not differ between groups. MASP or MAp44 levels were not associated with severity of disease. MASP and MAp44 levels were associated with cardiovascular risk factors including dyslipidaemia, obesity and hypertension. Our results suggest that MASP levels may be altered in vascular diseases. Larger studies are needed to confirm our results and elucidate the underlying mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are the primary disease affecting the thoracic ascending aorta, with an incidence rate of 10.4/100,000. Although about 20% of patients carry a mutation in a single gene that causes their disease, the remaining 80% of patients may also have genetic factors that increase their risk for developing TAAD. Many of the genes that predispose to TAAD encode proteins involved in smooth muscle cell (SMC) contraction and the disease-causing mutations are predicted to disrupt contractile function. SMCs are the predominant cell type in the ascending aortic wall. Mutations in MYH11, encoding the smooth muscle specific myosin heavy chain, are a rare cause of inherited TAAD. However, rare but recurrent non-synonymous variants in MYH11 are present in the general population but do not cause inherited TAAD. The goal of this study was to assess the potential role of these rare variants in vascular diseases. Two distinct variants were selected: the most commonly seen rare variant, MYH11 R247C, and a duplication of the chromosomal region spanning the MYH11 locus at 16p13.1. Genetic analyses indicated that both of these variants were significantly enriched in patients with TAAD compared with controls. A knock-in mouse model of the Myh11 R247C rare variant was generated, and these mice survive and reproduce normally. They have no structural abnormalities of the aorta or signs of aortic disease, but do have decreased aortic contractility. Myh11R247C/R247C mice also have increased proliferative response to vascular injury in vivo and increased proliferation of SMCs in vitro. Myh11R247C/R247C SMCs have decreased contractile gene and protein expression and are dedifferentiated. In fibroblasts, myosin force generation is required for maturation of focal adhesions, and enhancers of RhoA activity replace enhancers of Rac1 activity as maturation occurs. Consistent with these previous findings, focal adhesions are smaller in Myh11R247C/R247C SMCs, and there is decreased RhoA activation. A RhoA activator (CN03) rescues the dedifferentiated phenotype of Myh11R247C/R247C SMCs. Myh11R247C/R247C mice were bred with an existing murine model of aneurysm formation, the Acta2-/- mouse. Over time, mice carrying the R247C allele in conjunction with heterozygous or homozygous loss of Acta2 had significantly increased aortic diameter, and a more rapid accumulation of pathologic markers. These results suggest that the Myh11 R247C rare variant acts as a modifier gene increasing the risk for and severity of TAAD in mice. In patients with 16p13.1 duplications, aortic MYH11 expression is increased, but there is no corresponding increase in smooth muscle myosin heavy chain protein. Using SMCs that overexpress Myh11, we identified alterations in SMC phenotype leading to excessive protein turnover. All contractile proteins, not just myosin, are affected, and the proteins are turned over by autophagic degradation. Surprisingly, these cells are also more contractile compared with wild-type SMCs. The results described in this dissertation firmly establish that rare variants in MYH11 significantly affect the phenotype of SMCs. Further, the data suggests that these rare variants do increase the risk of TAAD via pathways involving altered SMC phenotype and contraction. Therefore, this study validates that these rare genetic variants alter vascular SMCs and provides model systems to explore the contribution of rare variants to disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bibliography: v. 1, p. 203-266. vols. 2-3 contain bibliographies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent epidemiological evidences indicate that arsenic exposure increases risk of atherosclerosis, cardio vascular diseases (CVD) such as hypertension, atherosclerosis, coronary artery disease (CAD) and microangiopathies in addition to the serious global health concern related to its carcinogenic effects. In experiments on animals, acute and chronic exposure to arsenic directly correlates with cardiac tachyarrhythmia, and atherogenesis in a concentration and duration dependent manner. Moreover, the other effects of long-term arsenic exposure include induction of non-insulin dependent diabetes by mechanisms yet to be understood. On the other hand, there are controversial issues, gaps in knowledge, and future research priorities in accelerated incidences of CVD and mortalities in patients with HIV who are under long-termanti-retroviral therapy (ART). Although, both HIV infection itself and various components of ART initiate significant pathological alterations in the myocardium and the vasculature, simultaneous environmental exposure to arsenic which is more convincingly being recognized as a facilitator of HIV viral cycling in the infected immune cells, may contribute an additional layer of adversity in these patients. A high degree of suspicion and early screening may allow appropriate interventional guidelines to improve the quality of lives of those affected. In this mini-review which have been fortified with our own preliminary data, we will discuss some of the key current understating of chronic arsenic exposure, and its possible impact on the accelerated HIV/ART induced CVD. The review will conclude with notes on recent developments in mathematical modeling in this field that probabilistically forecast incidence prevalence as functions of aging and life style parameters, most of which vary with time themselves; this interdisciplinary approach provides a complementary kernel to conventional biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.