818 resultados para User-centered system design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper argues a model of complex system design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of the efficient use of energy and material resource in life-cycle of buildings, the active involvement of the occupants in micro-climate control within buildings, and the natural environmental context. The interactions of the parameters compose a complex system of sustainable architectural design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The complexity theory of dissipative structure states a microscopic formulation of open system evolution, which provides a system design framework for the evolution of building environmental performance towards an optimization of sustainability in architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole System Design is increasingly being seen as one of the most cost effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks-in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1–5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6–10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detailed system design of a small experimental autonomous helicopter is described. The system requires no ground-to-helicopter communications and hence all automation hardware is on-board the helicopter. All elements of the system are described including the control computer, the flight computer (the helicopter-to-control-computer interface), the sensors and the software. A number of critical implementation issues are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erosion characteristics of high chromium (Cr, 16-19%) alloy cast iron with 5% and 10% manganese (Mn) prepared in metal and sand moulds through induction melting are investigated using jet erosion test setup in both as-cast and heat-treated conditions. The samples were characterised for hardness and microstructural properties. A new and novel non-destructive evaluation technique namely positron lifetime spectroscopy has also been used for the first time to characterise the microstructure of the material in terms of defects and their concentration. We found that the hardness decreases irrespective of the sample condition when the mould type is changed from metal to sand, On the other hand, the erosion volume loss shows an increasing trend. Since the macroscopic properties have a bearing on the microstructure, good credence is obtained from the microstructural features as seen from light and scanning electron micrographs. Faster cooling in the metal mould yielded fine carbide precipitation on the surface. The defect size and their concentration derived from positron method are higher for sand mould compared to metal mould. Lower erosion loss corresponds to smaller size defects in metal mould are the results of quicker heat transfer in the metal mould compared to the sand mould. Heat treatment effects are clearly seen as the reduced concentration of defects and spherodisation of carbides points to this. The erosion loss with respect to the defects size and concentration correlate very well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.