931 resultados para Urban-climate-indicator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change poses new challenges to cities and new flexible forms of governance are required that are able to take into account the uncertainty and abruptness of changes. The purpose of this paper is to discuss adaptive climate change governance for urban resilience. This paper identifies and reviews three traditions of literature on the idea of transitions and transformations, and assesses to what extent the transitions encompass elements of adaptive governance. This paper uses the open source Urban Transitions Project database to assess how urban experiments take into account principles of adaptive governance. The results show that: the experiments give no explicit information of ecological knowledge; the leadership of cities is primarily from local authorities; and evidence of partnerships and anticipatory or planned adaptation is limited or absent. The analysis shows that neither technological, political nor ecological solutions alone are sufficient to further our understanding of the analytical aspects of transition thinking in urban climate governance. In conclusion, the paper argues that the future research agenda for urban climate governance needs to explore further the links between the three traditions in order to better identify contradictions, complementarities or compatibilities, and what this means in practice for creating and assessing urban experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green façades constitute constructive technologies with a positive influence on sustainability in cities and several urban climate parameters such as thermal comfort, air quality and water management. According to the current research, the implementation of urban greenery contributes to increase the cooling effect and mitigate the urban heat island (UHI) phenomenon. This paper focuses on the role of vegetation in improving the urban environment of Madrid (Spain). The simulation results show that green walls could be more effective in urban morphologies with narrow streets. During overheated periods, the streets with green walls have a higher relative humidity in the surrounding areas than those with trees. The air temperature is found to be a little lower. The reduction of wind speed means a positive effect on urban hygrothermal comfort. Therefore, green walls could be taken into account as suitable tools to modify the outdoor thermal environment in cities with an extreme Continental Mediterranean climate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years a number of urban sustainability assessment frameworks are developed to better inform policy formulation and decision-making processes. This paper introduces one of these attempts in developing a comprehensive assessment tool—i.e., Micro-level Urban-ecosystem Sustainability IndeX (MUSIX). Being an indicator-based indexing model, MUSIX investigates the environmental impacts of land-uses on urban sustainability by measuring urban ecosystem components in local scale. The paper presents the methodology of MUSIX and demonstrates the performance of the model in a pilot test-bed—i.e., in Gold Coast, Australia. The model provides useful insights on the sustainability performance of the test-bed area. The parcel-scale findings of the indicators are used to identify local problems considering six main issues of urban development—i.e., hydrology; ecology; pollution; location; design, and; efficiency. The composite index score is used to propose betterment strategies to guide the development of local area plans in conjunction with the City's Planning Scheme. In overall, this study has shown that parcel-scale environmental data provides an overview of the local sustainability in urban areas as in the example of Gold Coast, which can also be used for setting environmental policy, objectives and targets.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BIPV (building integrated photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has significant influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The thermal model and electrical performance model of ventilated BIPV are combined to predict PV temperature and PV power output in Tianjin, China. Then, by using dynamic building energy model, the building cooling load for installing BIPV is calculated. A multi-layer model AUSSSM of urban canopy layer is used to assess the effect of BIPV on the Urban Heat Island (UHI). The simulation results show that in comparison with the conventional roof, the total building cooling load with ventilation PV roof may be decreased by 10%. The UHI effect after using BIPV relies on the surface absorptivity of original building. In this case, the daily total PV electricity output in urban areas may be reduced by 13% compared with the suburban areas due to UHI and solar radiation attenuation because of urban air pollution. The calculation results reveal that it is necessary to pay attention to and further analyze interactions between BIPV and microdimate in urban environments to decrease urban pollution, improve BIPV performance and reduce cooling load. Copyright © 2006 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BIPV(Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The effect of BIPV on urban microclimate can be summarized under the following four aspects. The change of absorptivity and emissivity from original building surface to PV will change urban radiation balance. After installation of PV, building cooling load will be reduced because of PV shading effect, so urban anthropogenic heat also decreases to some extent. Because PV can reduce carbon dioxide emissions which is one of the reasons for urban heat island, BIPV is useful to mitigate this phenomena. The anthropogenic heat will alter after using BIPV, because partial replacement of fossil fuel means to change sensible heat from fossil fuel to solar energy. Different urban microclimate may have various effects on BIPV performance that can be analyzed from two perspectives. Firstly, BIPV performance may decline with the increase of air temperature in densely built areas because many factors in urban areas cause higher temperature than that of the surrounding countryside. Secondly, the change of solar irradiance at the ground level under urban air pollution will lead to the variation of BIPV performance because total solar irradiance usually is reduced and each solar cell has a different spectral response characteristic. The thermal model and performance model of ventilated BIPV according to actual meteorologic data in Tianjin(China) are combined to predict PV temperature and power output in the city of Tianjin. Then, using dynamic building energy model, cooling load is calculated after BIPV installation. The calculation made based in Tianjin shows that it is necessary to pay attention to and further analyze interaction between them to decrease urban pollution, improve BIPV Performance and reduce colling load. Copyright © 2005 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The urban heat island (UHI) is a well-known effect of urbanisation and is particularly important in world megacities. Overheating in such cities is expected to be exacerbated in the future as a result of further urban growth and climate change. Demonstrating and quantifying the impact of individual design interventions on the UHI is currently difficult using available software tools. The tools developed in the LUCID (‘The Development of a Local Urban Climate Model and its Application to the Intelligent Design of Cities’) research project will enable the related impacts to be better understood, quantified and addressed. This article summarises the relevant literature and reports on the ongoing work of the project.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the growing number and significance of urban meteorological networks (UMNs) across the world, it is becoming critical to establish a standard metadata protocol. Indeed, a review of existing UMNs indicate large variations in the quality, quantity, and availability of metadata containing technical information (i.e., equipment, communication methods) and network practices (i.e., quality assurance/quality control and data management procedures). Without such metadata, the utility of UMNs is greatly compromised. There is a need to bring together the currently disparate sets of guidelines to ensure informed and well-documented future deployments. This should significantly improve the quality, and therefore the applicability, of the high-resolution data available from such networks. Here, the first metadata protocol for UMNs is proposed, drawing on current recommendations for urban climate stations and identified best practice in existing networks

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heterogeneous nature of urban environments means that atmospheric research ideally requires a dense network of sensors to adequately resolve the local climate. With recent advances in sensor technology, a number of urban meteorological networks now exist with a range of research or operational objectives. This article reviews and assesses the current status of urban meteorological networks, by examining the fundamental scientific and logistical issues related to these networks. The article concludes by making recommendations for future deployments based on the challenges encountered by existing networks, including the need for better reporting and documentation of network characteristics, standardized approaches and guidelines, along with the need to overcome financial barriers via collaborative relationships in order to establish the long-term urban networks essential for advancing urban climate research. Copyright © 2013 Royal Meteorological Society

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Though anthropogenic impacts on boundary layer climates are expected to be large in dense urban areas, to date very few studies of energy flux observations are available. We report on 3.5 years of measurements gathered in central London, UK. Radiometer and eddy covariance observations at two adjacent sites, at different heights, were analysed at various temporal scales and with respect to meteorological conditions, such as cloud cover. Although the evaporative flux is generally small due to low moisture availability and a predominately impervious surface, the enhancement following rainfall usually lasts for 12–18 h. As both the latent and sensible heat fluxes are larger in the afternoon, they maintain a relatively consistent Bowen ratio throughout the middle of the day. Strong storage and anthropogenic heat fluxes sustain high and persistently positive sensible heat fluxes. At the monthly time scale, the urban surface often loses more energy by this turbulent heat flux than is gained from net all-wave radiation. Auxiliary anthropogenic heat flux information suggest human activities in the study area are sufficient to provide this energy.