974 resultados para Urban vegetation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental degradation has become increasingly aggressive in recent years due to rapid urban development and other land use pressures. This chapter looks at BioCondition, a newly developed vegetation assessment framework by Queensland Department of Resource Management (DERM) and how mobile technology can assist beginners in conducting the survey. Even though BioCondition is designed to be simple, it is still fairly inaccessible to beginners due to its complex, time consuming, and repetitive nature. A Windows Phone mobile application, BioCondition Assessment Tool, was developed to provide on-site guidance to beginners and document the assessment process for future revision and comparison. The application was tested in an experiment at Samford Conservation Park with 12 students studying ecology in Queensland University of Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped in the Gwynns Falls watershed (17158.6 ha) in Maryland for 1994 and 1999 to document fragmentation, deforestation, and reforestation. The watershed was divided into lower (urban core), middle (older suburbs), and upper (recent suburbs) subsections. Over the entire watershed a net of 264.5 of 4855.5 ha of tree-covered patches were converted to urban land use-125 new tree-covered patches were added through fragmentation, 4 were added through reforestation, 43 were lost through deforestation, and 7 were combined with an adjacent patch. In addition, 180 patches were reduced in size. In the urban core, deforestation continued with conversion to commercial land use. Because of the lack of vegetation, commercial land uses are problematic for both species conservation and derived ecosystem benefits. In the lower subsection, shape complexity increased for tree-covered patches less than 10 ha. Changes in shape resulted from canopy expansion, planted materials, and reforestation of vacant sites. In the middle and upper subsections, the shape index value for tree-covered patches decreased, indicating simplification. Density analyses of the subsections showed no change with respect to patch densities but pointed out the importance of small patches (≤5 ha) as "stepping stone" to link large patches (e. g., ≥100 ha). Using an urban forest effect model, we estimated, for the entire watershed, total carbon loss and pollution removal, from 1994 to 1999, to be 14,235,889.2 kg and 13,011.4 kg, respectively due to urban land-use conversions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uttara Kannada is the only district in Karnataka, which has a forested area of about 80% and falls in the region of the Western Ghats. It is considered to be a very resourceful in terms of abundant natural resources and constitutes an important district in Karnataka. The forest resources of the district are under pressure as a large portion of the forested area has been converted to non-forestry activities since independence owing to the increased demands from human and animal population resulting in degradation of the forest ecosystem. This has led to poor productivity and regenerative capacity which is evident in the form of barren hill tops, etc in Coastal taluks of Uttara Kannada, entailing regular monitoring of the forest resources very essential. The classification of forest is a prerequisite for managing forest resources. Geographical Information System (GIS), allows the spatial and temporal analysis of the features of interest, and helps in solving the problem of deforestation and associated environmental and ecological problems. Spatial and temporal tools such as GIS and remotely sensed data helps the planners and decision makers in evolving the sustainable strategies for management and conservation of natural resources. Uttara Kannada district was classified on the basis of the land-use using supervised hard classifiers. The land use categories identified were urban area, water bodies, agricultural land, forest cover, and waste land. Further classification was carried out on the basis of forest type. The types of forest categorised were semi-evergreen, evergreen, moist deciduous, dry deciduous, plantations and scrub, thorny and non-forested area. The identified classes were correlated with the ground data collected during field visits. The observed results were compared with the historic data and the changes in the forest cover were analysed. From the assessment made it was clear that there has been a considerable degree of forest loss in certain areas of the district. It was also observed that plantations and social forests have increased drastically over the last fifteen years, and natural forests have declined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uttara Kannada is the only district in Karnataka, which has a forested area of about 80% and falls in the region of the Western Ghats. It is considered to be a very resourceful in terms of abundant natural resources and constitutes an important district in Karnataka. The forest resources of the district are under pressure as a large portion of the forested area has been converted to non-forestry activities since independence owing to the increased demands from human and animal population resulting in degradation of the forest ecosystem. This has led to poor productivity and regenerative capacity which is evident in the form of barren hill tops, etc in Coastal taluks of Uttara Kannada, entailing regular monitoring of the forest resources very essential. The classification of forest is a prerequisite for managing forest resources. Geographical Information System (GIS), allows the spatial and temporal analysis of the features of interest, and helps in solving the problem of deforestation and associated environmental and ecological problems. Spatial and temporal tools such as GIS and remotely sensed data helps the planners and decision makers in evolving the sustainable strategies for management and conservation of natural resources. Uttara Kannada district was classified on the basis of the land-use using supervised hard classifiers. The land use categories identified were urban area, water bodies, agricultural land, forest cover, and waste land. Further classification was carried out on the basis of forest type. The types of forest categorised were semi-evergreen, evergreen, moist deciduous, dry deciduous, plantations and scrub, thorny and non-forested area. The identified classes were correlated with the ground data collected during field visits. The observed results were compared with the historic data and the changes in the forest cover were analysed. From the assessment made it was clear that there has been a considerable degree of forest loss in certain areas of the district. It was also observed that plantations and social forests have increased drastically over the last fifteen years,and natural forests have declined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fourty-two high-rank syntaxa and seven associations of the thallophyte system of syntaxa are either described as new or validated in this paper. Among those, there are the following nine classes: Aspicilietea candidae, Caulerpetea racemosae, Desmococcetea olivacei, Entophysalidetea deustae, Gloeocapsetea sanguineae, Mesotaenietea berggrenii, Naviculetea gregariae, Porpidietea zeoroidis, Roccelletea phycopsis. Eleven orders and ten alliances as well as three associations are described or validated: the Aspicilietalia verruculosae (incl. Aspicilion mashiginensis and Teloschistion contortuplicati), the Caulerpetalia racemosae (incl. Caulerpion racemosae), the Desmococcetalia olivacei (incl. Desmococcion olivacei), the Dirinetalia massiliensis, the Fucetalia vesiculosi (incl. Ascophyllion nodosi), the Gloeocapsetalia sanguineae, the Lecideetalia confluescentis (incl. Lecideion confluescentis), the Mesotaenietalia berggrenii (incl. Mesotaenion berggrenii, Mesotaenietum berggrenii and Chloromonadetum nivalis), the Naviculetalia gregariae (incl. Oscillatorion limosae and Oscillatorietum limosae), the Porpidietalia zeoroidis (incl. Porpidion zeoroidis), and the Roccelletalia fuciformis (incl. Paralecanographion grumulosae). Further, five orders, seven alliances and four associations, classified in known classes, were described as well. These include: the Bacidinetalia phacodis, the Agonimion octosporae and the Dendrographetalia decolorantis (all in the Arthonio radiatae-Lecidelletea elaeochromae), the Staurothelion solventis (in the Aspicilietea lacustris), the Pediastro duplicis-Scenedesmion quadricaudae and the Pediastro duplicis-Scenedesmetum quadricaudae (both in the Asterionelletea formosae), the Peccanion coralloidis and the Peltuletalia euplocae (both in the Collematetea cristati), the Laminarion hyperboreae, the Saccorhizo polyschidi-Laminarietum and the Alario esculenti-Himanthalietum elongatae (all in the Cystoseiretea crinitae), the Delesserietalia sanguinei, the Delesserion sanguinei and the Delesserietum sanguineae (all in the Lithophylletea soluti), as well as the the Rinodino confragosae-Rusavskietalia elegantis and the Rhizocarpo geographici-Rusavskion elegantis (both in the Rhizocarpetea geographici).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban flood inundation models require considerable data for their parameterisation, calibration and validation. TerraSAR-X should be suitable for urban flood detection because of its high resolution in stripmap/spotlight modes. The paper describes ongoing work on a project to assess how well TerraSAR-X can detect flooded regions in urban areas, and how well these can constrain the parameters of an urban flood model. The study uses a TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK , in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with LiDAR data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and vegetation. An algorithm for the delineation of flood water in urban areas is described, together with its validation using the aerial photographs.