49 resultados para Uniparental Disomy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple myeloma is characterized by genomic alterations frequently involving gains and losses of chromosomes. Single nucleotide polymorphism (SNP)-based mapping arrays allow the identification of copy number changes at the sub-megabase level and the identification of loss of heterozygosity (LOH) due to monosomy and uniparental disomy (UPD). We have found that SNP-based mapping array data and fluorescence in situ hybridization (FISH) copy number data correlated well, making the technique robust as a tool to investigate myeloma genomics. The most frequently identified alterations are located at 1p, 1q, 6q, 8p, 13, and 16q. LOH is found in these large regions and also in smaller regions throughout the genome with a median size of 1 Mb. We have identified that UPD is prevalent in myeloma and occurs through a number of mechanisms including mitotic nondisjunction and mitotic recombination. For the first time in myeloma, integration of mapping and expression data has allowed us to reduce the complexity of standard gene expression data and identify candidate genes important in both the transition from normal to monoclonal gammopathy of unknown significance (MGUS) to myeloma and in different subgroups within myeloma. We have documented these genes, providing a focus for further studies to identify and characterize those that are key in the pathogenesis of myeloma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the benefits of maternal care have been investigated in many species, the caring role of males in species with exclusive paternal care has received less attention. We experimentally quantified the protective role of paternal care in the harvestman Iporangaia pustulosa. Additionally, we compared the effectiveness of paternal care against predation in this species with a syntopic harvestman with maternal care, Acutisoma proximum. We demonstrated that nearly one-third of the unprotected Iporangaia clutches disappeared entirely in 12 days, while the other two-thirds suffered a mean reduction of 55% in egg number. Conversely, 50% of the control clutches did not suffer any reduction, and only one was entirely consumed by predators. We also demonstrated that the mucus coat that covers Iporangaia clutches has an important deterrent role against predation by conspecifics: 58.3% of the clutches without mucus were attacked and three of them were entirely consumed, whereas only three clutches with mucus were attacked, suffering a reduction of up to three eggs. Iporangaia males were as efficient as Acutisoma females in protecting eggs. However, unattended Acutisoma eggs were attacked 20% more frequently than unattended Iporangaia eggs. Unattended Iporangaia eggs are protected by a mucus coat that prevents or decreases predation rate, whereas Acutisoma eggs are more susceptible to predation, probably because they lack this mucus coat. Thus, besides the fact that Iporangaia males efficiently protect the offspring against egg predators, females also contribute to egg protection by providing a mucus coat that deters egg predators. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bivalve species possess two distinct mtDNA lineages, called F and M, respectively inherited maternally and paternally: this system is called doubly uniparental inheritance (DUI). The main experimental project of my PhD was the quantification of the two mtDNAs during the development of the DUI species Ruditapes philippinarum, from early embryos to sub-adults, using Real-Time qPCR. I identified the time interval in which M mtDNA is lost from female individuals, while it is retained in males (which are heteroplasmic through all of their life cycle). The results also suggested absence of mtDNA replication during early embryogenesis, a process constituting a bottleneck that highly reduces the copy number of mtDNA molecules in cells of developing larvae. In males this bottleneck may produce cells homoplasmic for M mtDNA, and could be considered as a first step of the segregation of M in the male germ line. Another finding was the characterization, in young clams approaching the first reproductive season, of a significant boost in copy number of F mtDNA in females and of M in males. Given the age of animals in which this mtDNA-specific growth was observed, the finding could probably be the outcome of the first round of gonads and gametes production. Other lines of research included the characterization of the unassigned regions in mt genomes of DUI bivalves. These regions can harbor signals involved in the control of replication and/or transcription of the mtDNA molecule, as well as additional open reading frames (ORFs) not related to oxidative phosphorylation. These features in DUI species could be associated to the maintenance of separate inheritance routes for the two mtDNAs. Additional ORFs are also found in other animal mt genomes: I summarized the presence of gene duplications as a co-author in a review focusing on animal mt genomes with unusual gene content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the correlation of the extent of chromosomal aberrations including uniparental disomies (UPDs) by SNP-chip analysis and FISH to telomere length in 46 patients with CLL. CLL harboring high risk aberrations, i.e. deletions of 11q22-23 or 17p13, had significantly shorter telomeres (higher ΔTL) compared to patients with CLL without such abnormalities. Patients with high chromosomal aberration rates had a worse overall survival compared to cases with lower aberration rates. Interestingly, however, an increase was found in the number of UPDs with shorter telomeres. These findings support the idea that telomeres in CLL cells play a role in the overall chromosome stability and could be involved in the occurrence of UPDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-Mendelian inheritance of organelle genes is a phenomenon common to almost all eukaryotes, and in the isogamous alga Chlamydomonas reinhardtii, chloroplast (cp) genes are transmitted from the mating type positive (mt+) parent. In this study, the preferential disappearance of the fluorescent cp nucleoids of the mating type negative (mt−) parent was observed in living young zygotes. To study the change in cpDNA molecules during the preferential disappearance, the cpDNA of mt+ or mt− origin was labeled separately with bacterial aadA gene sequences. Then, a single zygote with or without cp nucleoids was isolated under direct observation by using optical tweezers and investigated by nested PCR analysis of the aadA sequences. This demonstrated that cpDNA molecules are digested completely during the preferential disappearance of mt− cp nucleoids within 10 min, whereas mt+ cpDNA and mitochondrial DNA are protected from the digestion. These results indicate that the non-Mendelian transmission pattern of organelle genes is determined immediately after zygote formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleolar dominance is an epigenetic phenomenon in which one parental set of ribosomal RNA (rRNA) genes is silenced in an interspecific hybrid. In natural Arabidopsis suecica, an allotetraploid (amphidiploid) hybrid of Arabidopsis thaliana and Cardaminopsis arenosa, the A. thaliana rRNA genes are repressed. Interestingly, A. thaliana rRNA gene silencing is variable in synthetic Arabidopsis suecica F1 hybrids. Two generations are needed for A. thaliana rRNA genes to be silenced in all lines, revealing a species-biased direction but stochastic onset to nucleolar dominance. Backcrossing synthetic A. suecica to tetraploid A. thaliana yielded progeny with active A. thaliana rRNA genes and, in some cases, silenced C. arenosa rRNA genes, showing that the direction of dominance can be switched. The hypothesis that naturally dominant rRNA genes have a superior binding affinity for a limiting transcription factor is inconsistent with dominance switching. Inactivation of a species-specific transcription factor is argued against by showing that A. thaliana and C. arenosa rRNA genes can be expressed transiently in the other species. Transfected A. thaliana genes are also active in A. suecica protoplasts in which chromosomal A. thaliana genes are repressed. Collectively, these data suggest that nucleolar dominance is a chromosomal phenomenon that results in coordinate or cooperative silencing of rRNA genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nearly all eukaryotes, at least some individuals inherit mitochondrial and chloroplast genes from only one parent. There is no single mechanism of uniparental inheritance: organelle gene inheritance is blocked by a variety of mechanisms and at different stages of reproduction in different species. Frequent changes in the pattern of organelle gene inheritance during evolution suggest that it is subject to varying selective pressures. Organelle genes often fail to recombine even when inherited biparentally; consequently, their inheritance is asexual. Sexual reproduction is apparently less important for genes in organelles than for nuclear genes, probably because there are fewer of them. As a result organelle sex can be lost because of selection for special reproductive features such as oogamy or because uniparental inheritance reduces the spread of cytoplasmic parasites and selfish organelle DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To correlate the differentially expressed miRNAs with clinico-pathological features in uveal melanoma (UM) tumors harbouring chromosomal 3 aberrations among South Asian Indian cohort.

METHODS: Based on chromosomal 3 aberration, UM (n = 86) were grouped into monosomy 3 (M3; n = 51) and disomy 3 (D3; n = 35) by chromogenic in-situ hybridisation (CISH). The clinico-pathological features were recorded. miRNA profiling was performed in formalin fixed paraffin embedded (FFPE) UM samples (n = 6) using Agilent, Human miRNA microarray, 8x15KV3 arrays. The association between miRNAs and clinico-pathological features were studied using univariate and multivariate analysis. miRNA-gene targets were predicted using Target-scan and MiRanda database. Significantly dys-regulated miRNAs were validated in FFPE UM (n = 86) and mRNAs were validated in frozen UM (n = 10) by qRT-PCR. Metastasis free-survival and miRNA expressions were analysed by Kaplen-Meier analysis in UM tissues (n = 52).

RESULTS: Unsupervised analysis revealed 585 differentially expressed miRNAs while supervised analysis demonstrated 82 miRNAs (FDR; Q = 0.0). Differential expression of 8 miRNAs: miR-214, miR-149*, miR-143, miR-146b, miR-199a, let7b, miR-1238 and miR-134 were studied. Gene target prediction revealed SMAD4, WISP1, HIPK1, HDAC8 and C-KIT as the post-transcriptional regulators of miR-146b, miR-199a, miR-1238 and miR-134. Five miRNAs (miR-214, miR146b, miR-143, miR-199a and miR-134) were found to be differentially expressed in M3/ D3 UM tumors. In UM patients with liver metastasis, miR-149* and miR-134 expressions were strongly correlated.

CONCLUSION: UM can be stratified using miRNAs from FFPE sections. miRNAs predicting liver metastasis and survival have been identified. Mechanistic linkage of de-regulated miRNA/mRNA expressions provide new insights on their role in UM progression and aggressiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muchos bivalvos tienen un sistema de herencia mitocondrial que exceptúa la norma general de herencia maternal (SMI). En la almeja Ruditapes philippinarum, entre otras, se da la herencia uniparental doble (DUI) de manera que coexisten dos linajes de ADN mitocondrial: el linaje paternal (M) que se transmite de padres a hijos a través del esperma, y el linaje maternal (F) que se transmite de madres a toda la descendencia a través de los óvulos. De esta manera, las hembras serán homoplásmicas para el genoma F y los machos heteroplásmicos, mostrando principalmente genoma M en tejidos somáticos, y genoma F solo en tejidos somáticos en menor medida. Se ha propuesto que el sistema DUI evolucionó del SMI, y que está regulado por factores genéticos nucleares codificados por la hembra. En el contexto de un estudio sobre las características de este sistema en R. philippinarum se ha secuenciado el transcriptoma en muestras de varios tejidos de individuos adultos y las secuencias obtenidas se han alineado a genomas mitocondriales de referencia M y F. Sobre la base de estos resultados se han calculado ratios que reflejan la expresión de ambos genomas en los diferentes tejidos de los adultos, diferenciando entre machos y hembras. Dichas ratios han sido ponderadas con las proporciones corporales de 10 individuos adultos que fueron diseccionados con esa finalidad. Se confirman los patrones de distribución de ambos genomas, aunque las hembras han resultado ser heteroplásmicas con existencia de genoma M en sus tejidos somáticos y los machos heteroplásmicos en todos sus tejidos incluyendo la gónada. Dado que el sexo de R. philippinarum solo se puede determinar mediante métodos estándares cuando los individuos presentan gónadas, una aplicación de estos resultados ha sido la puesta a punto de un sistema de determinación del sexo en individuos sexualmente inmaduros, diferenciando entre individuos de crecimiento bajo (S) y alto (F). El método diseñado para determinar el sexo de los individuos juveniles ha resultado exitoso y en consecuencia se ha podido calcular la ratio sexual de los individuos S con un resultado de 0,39.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As porções uniparentais do genoma humano, representadas pelo cromossomo Y e pelo DNA mitocondrial (DNAmt), contêm informação genética relacionada às heranças patrilinear e matrilinear, respectivamente. Além da aplicabilidade em genética médica e forense, o DNAmt tem sido utilizado como um importante marcador molecular em estudos sobre evolução para traçar inferências filogenéticas e filogeográficas sobre as populações humanas. A análise de linhagens de DNAmt presentes em diferentes populações mundiais levou à identificação de haplogrupos reunindo diversos haplótipos específicos dos grandes grupos étnicos: africanos, europeus, asiáticos e nativos americanos. A população brasileira é conhecida como uma das mais heterogêneas do mundo, resultado do processo de colonização do país, abrangendo mais de cinco séculos de miscigenação entre povos de diferentes continentes. Este trabalho teve como objetivo estimar a partir da análise do DNA mitocondrial as proporções ancestrais africanas, européias e ameríndias na população do Rio de Janeiro. Para isso foram sequencidas as regiões hipervariáveis HVI e HVII do DNAmt de 109 indivíduos não relacionados geneticamente residentes no Rio de Janeiro. Os haplogrupos foram classificados de acordo com o conjunto de polimorfismos dos haplótipos individuais. Programas estatísticas foram utilizados para a determinação de parâmetros de diversidade genética e comparações populacionais. A diversidade haplotípica foi estimada em 0,9988. Nossos resultados demonstraram na população do Rio de Janeiro percentuais de cerca de 60%, 25% e 15% de ancestralidades maternas africana, ameríndia e européia, respectivamente. Através da análise de distâncias genéticas, evidenciou-se que a população do Rio de Janeiro está mais próxima das populações brasilerias dos estados de São Paulo e Alagoas. Como descrito nos registros históricos, algumas regiões do país tiveram processos de colonização muito específicos que se refletem nas proporções ancestrais maternas e paternas observadas. Em relação ao DNAmt, não se verificou diferença genética significativa entre as populações do Rio de Janeiro e a de Angola, uma população africana. Os resultados obtidos estão em estreita concordância com os registros históricos e outros estudos genéticos acerca da formação da população brasileira

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chegada dos primeiros habitantes há cerca de 15.000 anos e de colonos portugueses e escravos africanos, desde o século 15, em sucessivas migrações na América do Sul, levaram à formação de populações miscigenadas com raízes consideravelmente diversificadas. É notável a heterogeneidade populacional decorrente dessas migrações e do processo de amalgamento de indígenas a partir dos contatos entre os diferentes grupos étnicos, iniciados com a colonização da América pelos europeus. A despeito da elevada miscigenação, ainda se pode encontrar no Brasil populações que, majoritariamente, mantém a identidade genética dos seus ancestrais mais remotos. O objetivo desse estudo foi caracterizar a ancestralidade da população de Santa Isabel do Rio Negro, Amazonas, com fortes traços fenotípicos ameríndios, e da tribo indígena Terena de Mato Grosso do Sul. Para isto, foram estudados marcadores uniparentais paternos ligados à região não recombinante do cromossomo Y e maternos presentes na região controle do DNA mitocondrial (mtDNA). Em relação à herança paterna, foram genotipados 31 indivíduos de Santa Isabel do Rio Negro, sendo que os Terena já haviam sido estudados sob este aspecto. Quanto ao mtDNA, foram estudados 76 indivíduos de ambos os sexos e 51 Indivíduos do sexo masculino de Santa Isabel do Rio Negro e dos Terena, respectivamente. A análise de marcadores Y-SNPs possibilitou a caracterização de 55% dos cromossomos Y dos indivíduos de Santa Isabel do Rio Negro como pertencentes ao haplogrupo Q1a3a*, característico de ameríndio. Através do mtDNA, foi verificado que o haplogrupo A é o mais frequente nas duas populações, com percentuais de 34% e 42% em Santa Isabel do Rio Negro e na tribo Terena, respectivamente, observando-se no tocante à ancestralidade materna a não ocorrência de diferenciação genética significativa entre as duas populações. Por outro lado, a análise do cromossomo Y revelou a ocorrência de distância genética significativa entre elas, o que pode ser resultante da diferença entre os tamanhos das amostras populacionais ou refletir diferenças entre rotas migratórias dos ameríndios anteriormente à colonização. Os resultados mostram ainda que os genomas mitocondriais autóctones foram melhor preservados, e que novos haplogrupos do cromossomo Y foram introduzidos recentemente na população ameríndia. É, portanto, possível concluir que a população de Santa Isabel do Rio Negro e a tribo indígena Terena apresentam um significativo grau de conservação da ancestralidade ameríndia, apesar do longo histórico de contato com europeus e africanos, os outros povos formadores da população brasileira.