941 resultados para Unfolding of a Homoclinic Tangency
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The urea effect on the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) stability was studied by analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). AUC data show that the sedimentation coefficient distributions curves c (S), at 1.0mol/L of urea, display a single peak at 57 S, associated to the undissociated protein. The increase in urea concentration, up to 4.0mol/L, induces the appearance of smaller species, due to oligomeric dissociation. The sedimentation coefficients and molecular masses are 9.2S and 204kDa for the dodecamer (abcd)3, 5.5S and 69kDa for the tetramer (abcd), 4.1S and 52kDa for the trimer (abc) and 2.0 S and 17kDa for the monomer d, respectively. SAXS data show initially a decrease in the I(0) values due to the oligomeric dissociation, and then, above 4.0mol/L of denaturant, for oxy-HbGp, and above 6.0mol/L for cyanomet-HbGp, an increase in the maximum dimension and gyration radius is observed, due to the unfolding process. According to AUC and SAXS data the HbGp unfolding is described by two phases: the first one, at low urea concentration, below 4.0mol/L, characterizes the oligomeric dissociation, while the second one, at higher urea concentration, is associated to the unfolding of dissociated species. Our results are complementary to a recent report based on spectroscopic observations. © 2012 Elsevier B.V.
Resumo:
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.
Resumo:
Translocation of mitochondrial precursor proteins across the mitochondrial outer membrane is facilitated by the translocase of the outer membrane (TOM) complex. By using site-specific photocrosslinking, we have mapped interactions between TOM proteins and a mitochondrial precursor protein arrested at two distinct stages, stage A (accumulated at 0°C) and stage B (accumulated at 30°C), in the translocation across the outer membrane at high resolution not achieved previously. Although the stage A and stage B intermediates were assigned previously to the forms bound to the cis site and the trans site of the TOM complex, respectively, the results of crosslinking indicate that the presequence of the intermediates at both stage A and stage B is already on the trans side of the outer membrane. The mature domain is unfolded and bound to Tom40 at stage B whereas it remains folded at stage A. After dissociation from the TOM complex, translocation of the stage B intermediate, but not of the stage A intermediate, across the inner membrane was promoted by the intermembrane-space domain of Tom22. We propose a new model for protein translocation across the outer membrane, where translocation of the presequence and unfolding of the mature domain are not necessarily coupled.
Resumo:
Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force. We compare this with chemical unfolding rates for untethered modules extrapolated to 0 M denaturant. The unfolding rates obtained by the two methods are the same. Furthermore, the transition state for unfolding appears at the same position on the folding pathway when assessed by either method. These results indicate that mechanical unfolding of a single protein by AFM does indeed reflect the same event that is observed in traditional unfolding experiments. The way is now open for the extensive use of AFM to measure folding reactions at the single-molecule level. Single-molecule AFM recordings have the added advantage that they define the reaction coordinate and expose rare unfolding events that cannot be observed in the absence of chemical denaturants.
Resumo:
A novel thermodynamic approach to the reversible unfolding of proteins in aqueous urea solutions has been developed based on the premise that urea ligands are bound cooperatively to the macromolecule. When successive stoichiometric binding constants have values larger than expected from statistical effects, an equation for moles of bound urea can be derived that contains imaginary terms. For a very steep unfolding curve, one can then show that the fraction of protein unfolded, B̄, depends on the square of the urea concentration, U, and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\bar {B}=\frac{{\mathit{A}}^{{\mathit{2}}}_{{\mathit{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}n\bar {B}}{\mathit{U}}^{{\mathit{2}}}}{{\mathrm{1\hspace{.167em}+\hspace{.167em}}}{\mathit{A}}^{{\mathrm{2}}}_{{\mathrm{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}\bar {B}}{\mathit{U}}^{{\mathrm{2}}}}{\mathrm{.}}\end{equation*}\end{document} A12 is the binding constant as B̄→ 0, and λ is a parameter that reflects the augmentation in affinities of protein for urea as the moles bound increases to the saturation number, n. This equation provides an analytic expression that reproduces the unfolding curve with good precision, suggests a simple linear graphical procedure for evaluating A12 and λ, and leads to the appropriate standard free energy changes. The calculated ΔG° values reflect the coupling of urea binding with unfolding of the protein. Some possible implications of this analysis to protein folding in vivo are described.
Resumo:
Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 ± 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.
Resumo:
Apolipoprotein A-1 (apoA-1) in complex with high-density lipoprotein is critically involved in the transport and metabolism of cholesterol and in the pathogenesis of atherosclerosis. We reexamined the thermal unfolding of lipid-free apoA-1 in low-salt solution at pH approximately 7, by using differential scanning calorimetry and circular dichroism. At protein concentrations <5 mg/ml, thermal unfolding of apoA-1 is resolved as an extended peak (25 degrees C-90 degrees C) that can be largely accounted for by a single reversible non-two-state transition with midpoint Tm 57 +/- 1 degree C, calorimetric enthalpy deltaH(Tm)= 200 +/- 20 kcal/mol (1 kcal = 4.18 kJ), van't Hoff enthalpy deltaHv(Tm) approximately 32.5 kcal/mol, and cooperativity deltaHv(Tm)/deltaH(Tm) approximately 0.16. The enthalpy deltaH(Tm) can be accounted for by melting of the alpha-helical structure that is inferred by CD to constitute approximately 60% of apoA-1 amino acids. Farand near-UV CD spectra reveal noncoincident melting of the secondary and tertiary structural elements and indicate a well-defined secondary structure but a largely melted tertiary structure for apoA-1 at approximately 37 degrees C and pH 7. This suggests a molten globular-like state for lipid-free apoA-1 under near-physiological conditions. Our results suggest that in vivo lipid binding by apoA-1 may be mediated via the molten globular apolipoprotein state in plasma.
Resumo:
A temperature jump (T-jump) method capable of initiating thermally induced processes on the picosecond time scale in aqueous solutions is introduced. Protein solutions are heated by energy from a laser pulse that is absorbed by homogeneously dispersed molecules of the dye crystal violet. These act as transducers by releasing the energy as heat to cause a T-jump of up to 10 K with a time resolution of 70 ps. The method was applied to the unfolding of RNase A. At pH 5.7 and 59 degrees C, a T-jump of 3-6 K induced unfolding which was detected by picosecond transient infrared spectroscopy of the amide I region between 1600 and 1700 cm-1. The difference spectral profile at 3.5 ns closely resembled that found for the equilibrium (native-unfolded) states. The signal at 1633 cm-1, corresponding to the beta-sheet structure, achieved 15 +/- 2% of the decrease found at equilibrium, within 5.5 ns. However, no decrease in absorbance was detected until 1 ns after the T-ump. The disruption of beta-sheet therefore appears to be subject to a delay of approximately 1 ns. Prior to 1 ns after the T-jump, water might be accessing the intact hydrophobic regions.
Resumo:
Water is thought to play a dominant role in protein folding, yet gaseous multiply protonated proteins from which the water has been completely removed show hydrogen/deuterium (H/D) exchange behavior similar to that used to identify conformations in solution. Indicative of the gas-phase accessibility to D2O, multiply-charged (6+ to 17+) cytochrome c cations exchange at six (or more) distinct levels of 64 to 173 out of 198 exchangeable H atoms, with the 132 H level found at charge values 8+ to 17+. Infrared laser heating and fast collisions can apparently induce ions to unfold to exchange at a higher distinct level, while charge-stripping ions to lower charge values yields apparent folding as well as unfolding.
Resumo:
A sensitive test for kinetic unfolding intermediates in ribonuclease A (EC 3.1.27.5) is performed under conditions where the enzyme unfolds slowly (10 degrees C, pH 8.0, 4.5 M guanidinium chloride). Exchange of peptide NH protons (2H-1H) is used to monitor structural opening of individual hydrogen bonds during unfolding, and kinetic models are developed for hydrogen exchange during the process of protein unfolding. The analysis indicates that the kinetic process of unfolding can be monitored by EX1 exchange (limited by the rate of opening) for ribonuclease A in these conditions. Of the 49 protons whose unfolding/exchange kinetics was measured, 47 have known hydrogen bond acceptor groups. To test whether exchange during unfolding follows the EX2 (base-catalyzed) or the EX1 (uncatalyzed) mechanism, unfolding/exchange was measured both at pH 8.0 and at pH 9.0. A few faster-exchanging protons were found that undergo exchange by both EX1 and EX2 processes, but the 43 slower-exchanging protons at pH 8 undergo exchange only by the EX1 mechanism, and they have closely similar rates. Thus, it is likely that all 49 protons undergo EX1 exchange at the same rate. The results indicate that a single rate-limiting step in unfolding breaks the entire network of peptide hydrogen bonds and causes the overall unfolding of ribonuclease A. The additional exchange observed for some protons that follows the EX2 mechanism probably results from equilibrium unfolding intermediates and will be discussed elsewhere.
Resumo:
Printed at the Merrymount Press.
Resumo:
pt. 1. Old Testament. -- pt. 2. New Testament.
Resumo:
Mode of access: Internet.
Resumo:
The effect of pH on the unfolding pathway acid the stability of the toxic protein abrin-II have been studied by increasing denaturant concentrations of guanidine hydrochloride and by monitoring the change in 8,1-anilino naphthalene sulfonic acid (ANS) fluorescence upon binding to the hydrophobic sites of the protein. Intrinsic protein fluorescence, far and near UV-circular dichroism (CD) spectroscopy and ANS binding studies reveal that the unfolding of abrin-II occurs through two intermediates at pH 7.2 and one intermediate at pH 4.5. At pH 7.2, the two subunits A and B of abrin-II unfold sequentially. The native protein is more stable at pH 4.5 than at pH 7.2. However, the stability of the abrin-II A-subunit is not affected by a change in pH. These observations may assist in an understanding of the physiologically relevant transmembrane translocation of the toxin.