962 resultados para Ultraviolet luminescence
Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process
Resumo:
One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 degrees C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 degrees C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1-3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the T-4(1)-(6)A(1) transition of Mn2+ ion.
Resumo:
CaIn2O4:Eu3+ phosphors were prepared by a Pechini so-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), cathodoluminescence (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C, and the crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that the CaIn2O4:Eu3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams, the CaIn2O4:Eu3+ phosphors show the characteristic emissions of Eu3+ ((DJ-7FJ ')-D-5 J, J ' = 0, 1, 2, 3 transitions). The luminescence color can be tuned from white to orange to red by adjusting the doping concentration of EU3+. The corresponding luminescence mechanisms have been proposed.
Resumo:
Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.
Resumo:
Uniform NaLuF(4) nanowires and LuBO(3) microdisks have been successfully prepared by a designed chemical conversion method. The lutetium precursor nanowires were first prepared through a simple hydrothermal process. Subsequently, uniform NaLuF(4) nanowires and LuBO(3) microdisks were synthesized at the expense of the precursor by a hydrothermal conversion process. The whole process was carried out in aqueous condition without any organic solvents, surfactant, or catalyst. The conversion processes from precursor to the final products have been investigated in detail. The as-obtained Eu(3+) and Tb(3+)-doped LuBO(3) microdisks and NaLuF(4) nanowires show strong characteristic red and green emissions under ultraviolet excitation or low-voltage electron beam excitation. Moreover, the luminescence colors of the Eu(3+) and Tb(3+) codoped LuBO(3) samples can be tuned from red, orange, yellow, and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.
Resumo:
A variety of uniform lanthanide orthoborates LnBO(3) (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates have been successfully prepared by a general and facile conversion method. One-dimensional (ID) lanthanide hydroxides were first prepared through a simple hydrothermal process. Subsequently, uniform LnBO(3) microplates were synthesized at the expense of the ID precursors during a hydrothermal conversion process. The whole process in this method was carried out in aqueous condition without the use of any organic solvents, surfactant, or catalyst. The as-obtained rare earth ions doped GdBO3 and TbBO3 microplates show strong light emissions with different colors coming from different activator ions under ultraviolet excitation or low-voltage electron beam excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel display devices.
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
The Sr3Al2O5Cl2:Ce3+,Eu2+ phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce3+ to Eu2+ ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.
Resumo:
Y2O3 : Eu3+ microspheres, with an average diameter of 3 mu m, were successfully prepared through a large-scale and facile solvothermal method followed by a subsequent heat treatment. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, inductive coupled plasma atomic absorption spectrometric analysis, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. These microspheres were actually composed of randomly aggregated nanoparticles. The formation mechanisms for the Y2O3 : Eu3+ microspheres have been proposed on an isotropic growth mechanism. The Y2O3 : Eu3+ microspheres show a strong red emission corresponding to D-5(0) -> F-7(2) transition (610 nm) of Eu3+ under ultraviolet excitation (259 nm) and low-voltage electron beams excitation (1-5 kV), which have potential applications in fluorescent lamps and field emission displays.
Resumo:
Nanocyrstalline Tb3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy (FESEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FESEM images indicate that the Tb3+-doped LaGaO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low-voltage electron beams (0.5-3 kV), the Tb3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tb3+ (D-5(3,4)-F-7(6,5,4,3) transitions). The emission colors of Tb3+-doped LaGaO3 phosphors can be tuned from blue to green by changing the excitation wavelength of ultraviolet light and the doping concentration of Tb3+ to some extent. Relevant luminescence mechanisms are discussed.
Resumo:
SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.
Resumo:
Caln(2)O(4):Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescencc (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C 3-1 and pure CaIn2O4 phase can be obtained after annealing at 900 degrees C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400nm. Under the excitation of ultraviolet light and low electron beams (1-5kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ ((F9/2-H15/2)-F-4-H-6 and (F9/2-H13/2)-F-4-H-6 transitions, blue-white), Pr3+ ((P0-H4)-P-3-H-3, (D2-H4)-D-1-H-3 and (P1-H5)-P-3-H-3 transitions, green) and Tb3+ ((D4-F6,5,4,3)-D-5-F-7 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+ ,Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.
Resumo:
SrCO3:Eu3+ /Tb3+ microneedles that grow along the a-axis were successfully prepared through a large-scale and facile hydrothermal method without any template and further annealing treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectra as well kinetic decays, were used to characterize the samples. The preferential growth along a-axis for SrCO3:Eu3+/Tb3+ microneedles has been proposed through analysis of the XRD patterns of samples obtained at different hydrothermal treatment time. Under ultraviolet excitation, the SrCO3:Eu3+ and SrCO3:Tb3+ microncedle samples show a strong red and green emission corresponding to the D-5(0)-F-7(j) (J = 1, 2, 3, 4) transitions of Eu3+ and the D-5(4)-(7) F-j (J = 6, 5, 4, 3) transitions of Tb3+, respectively, which have potential applications in lighting fields.
Resumo:
Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.
Resumo:
Thin film phosphors with compositions of RP1-xVxO4: A (R = Y, Gd, La; A = Sm3+, Et3+; x = 0, 0.5, 1) have been prepared by a Pechini sol-gel process. X-Ray diffraction, atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized to characterize the thin film phosphors. The results of XRD showed that a solid solution formed in YVxP1-xO4: A film series from x = 0 to x = 1 with zircon structure, which also held for GdVO4: A film. However, LaVO4: A film crystallized with a different structure, monazite. AFM study revealed that the phosphor films consisted of homogeneous particles ranging from 90 to 400 nm depending on the compositions. Upon short ultraviolet excitation, the films exhibit the characteristic Sm(3+ 4)G(5/2)-H-6(J) (J=5/2, 7/2, 9/2) emission in the red region and Er3+ H-2(11/2), S-4(3/2)-I-4(15/2) emission in the green region, respectively With the increase of x values in YVxP1-xO4: SM3+ (Er3+) films, the emission intensity Of SM3+ (Er3+) increases due to the increase of energy transfer probability from VO43- to Sm3+ (Er3+). Due to the structural effects, the Sm3+ (Er3+) shows similar spectral properties in YVO4 and GdVO4 films, which are much different from those in LaVO4 film.
Resumo:
Vacuum ultraviolet excitation spectra of phosphors (La,Gd)PO4:RE3+ (RE = Eu or Tb) and X-ray photoelectron spectra of LaPO4 and GdPO4 are investigated. The vacuum ultraviolet excitation intensity of (La,Gd)PO4:RE3+ is enhanced with the increasing of Gd3+ content, which implies that Gd3+ plays an intermediate role in energy transfer from host absorption band to RE3+. When Gd3+ is doped into LaPO4:Eu, charge transfer band (CT band) begins to shift to higher energy region and the overlap degree of CT band and the host absorption band gets greater with more Gd3+ doped into LaPO4. These results suggest that the dopant (Gd3+) gives an important influence on energy transfer efficiency. The top of LaPO4 valance band is formed by the 2p level of O2-, whereas that of GdPO4 valance band is formed by the 2p level of O2- and the 4f level of Gd3+, showing the differences in band structures between LaPO4 and GdPO4.