994 resultados para Ultrasonic measurement
Resumo:
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.
Resumo:
PURPOSE: To evaluate the association between corneal hysteresis and axial length/refractive error among rural Chinese secondary school children. DESIGN: Cross-sectional cohort study. METHODS: Refractive error (cycloplegic auto-refraction with subjective refinement), central corneal thickness (CCT) and axial length (ultrasonic measurement), intraocular pressure (IOP), and corneal hysteresis (Reichert Ocular Response Analyzer) were measured on a rural school-based cohort of children. RESULTS: Among 1,233 examined children, the mean age was 14.7 +/- 0.8 years and 699 (56.7%) were girls. The mean spherical equivalent (n = 1,232) was -2.2 +/- 1.6 diopters (D), axial length (n = 643) was 23.7 +/- 1.1 mm, corneal hysteresis (n = 1,153) was 10.7 +/- 1.6 mm Hg, IOP (n = 1,153) was 17.0 +/- 3.4 mm Hg, and CCT (n = 1,226) was 553 +/- 33 microns. In linear regression models, longer axial length was significantly (P < .001 for both) associated with lower corneal hysteresis and higher IOP. Hysteresis in this population was significantly (P < .001) lower than has previously been reported for normal White children (n = 42, 12.3 +/- 1.3 mm Hg), when adjusting for age and gender. This difference did not appear to depend on differences in axial length between the populations, as it persists when only Chinese children with normal uncorrected vision are included. CONCLUSIONS: Prospective studies will be needed to determine if low hysteresis places eyes at risk for axial elongation secondary or if primary elongation results in lower hysteresis.
Resumo:
Stitched fabrics have been widely studied for potential application in aircraft structures since stitch yarns offer improvements in the out-of-plane mechanical properties and also can save time in the lay up process. The down side of stitch yarns came up in the manufacturing process of fabric in which defects introduced by the needle movement creating fiber-free-zones, fiber breakage and misalignment of fibers. The dry stitched carbon fabric preform has mainly been used in the Resin Transfer Molding (RTM) process which high fiber content is aimed, those defects influence negatively the injection behavior reducing the mechanical properties of final material. The purpose of this research work focused on testing in quasi-static mechanical mode (in-plane tension) of a monocomponent resin CYCOM (R) 890 RTM/carbon fiber anti-symmetric quadriaxial fabric stitched by PE 80Dtex yarn processed by RTM. The evaluation consisted in comparing the scatter of the quasi-static test with the attenuation of ultrasonic maps, which show the path of the resin and possible dry spots considering that interference of yarn in resin flow is detectable in ultrasonic measurement. Microscopic analysis was also considered for further evaluation in case of premature failure. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an ultrasonic method to measure small concentrations of water in lubricating oil. It uses an ultrasonic measurement cell composed by a piezoceramic emitter (5 and 10 MHz), and a large aperture PVDF receiver that eliminates diffraction effects. The propagation velocity, attenuation coefficient and density of several samples of water-in-oil emulsion were measured. The concentrations of water of the samples were in the range of 0 to 5% in volume, and the results showed that these low concentrations can be discriminated within a resolution of 0.2% in the studied range, using the measurement of the propagation velocity.
Resumo:
This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.