994 resultados para Ultrasonic effects
Resumo:
The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.
Resumo:
Ultrasonic vocalization plays an important role in intraspecies communication for rats. It has been well demonstrated that rats will emit 22kHz vocalization in stressfiil or threatening situations. Although the neural mechanism underlying vocahzation is not well understood, it is known that chohnergic input to the basal forebrain induces such alarm calls. A number of experiments have found that intracerebral injection of carbachol, a predominantly muscarinic agonist, into die anterior hypothalamic/preoptic area (AH/POA) rehably induces vocalization similar to naturally emitted ultrasonic calls. It has also been shown that carbachol has extensive inhibitory effects on neuronal firing in the same area. This result impUes that the inhibitory effects of carbachol in the AH/POA could trigger vocahzation, and that the GABAergic system could be involved. The purpose of this study is to investigate the effects ofGABA agonists and antagonists on flie production of carbachol induced 22kHz vocalization. The following hypotheses were examined: 1) apphcation ofGABA (a naturally occurring inhibitory neurotransmitter) will have a synergistic effect with carbachol, increasing vocalization; and 2) tiie apphcation ofGABA antagonists (picrotoxin or bicuculline) will reduce caibachol-induced vocalization. A total of sixty rats were implanted with stainless steel guide cannulae in the AH/POA area. After recovery, animals were locally pretreated with 1) GABA (l-40ng), 2) picrotoxin (1 .5^g) or bicuculhne (0.03ng), or 3) sahne; before injection with carbachol (1 .5^g). The resulting vocalization was measured and quantitated. The results indicate that pretreatment with GABA or GABA antagonists had no significant effect on vocalization. Local pretreatment with GABA did not potentiate the vocal response as measured by its duration, latraicy, and total number of calls. Similarly, pretreatment with picrotoxin or bicuculline had no effects on the same measures of vocalization. The results suggest tfiat chohnoceptive neurons involved in the production of alarm calls are not under direct GABAergic control.
Resumo:
Rats emit two distinct types of ultrasonic vocalizations in adulthood: 22 kHz (aversive situation), and 50 kHz calls (appetitive situation). The present project is focussed on pharmacological studies of 50 kHz vocalizations. The 50 kHz calls are elicited from dopaminergic activation in the meso limbic pathway and are emitted in such appetitive situations as social contact(s), sexual encounters, food reward, etc. Eighty-five male rats were stereotaxically implanted with bilateral guide cannulae in the nucleus accumbens shell (A= 9.7, L= 1.2, V= 6.7). Quinpirole, a D2/D3 dopaminergic agonist, was injected in low doses to the nucleus accumbens shell in an attempt to elicit 50 kHz vocalizations. A dose response was obtained for the low dose range of quinpirole for six doses: 0.025 Jlg, 0.06 Jlg, 0.12 Jlg, 0.25 Jlg, 0.5 Jlg, and 1.0 Jlg. It was found that only application of the 0.25 Jlg dose of quinpirole and the 7 Jlg dose of amphetamine (positive control) significantly increased the total number of 50 kHz calls (p < 0.006 and p < 0.004 respectively); and particularly significantly increased the frequency modulated type of these calls (p < 0.01, and p < 0.006 respectively). In a double injection procedure, the dose of 0.25 Jlg quinpirole was antagonized with raclopride (D2 antagonist) or U99194A maleate (D3 antagonist) in an attempt to antagonize the response. The 0.25 Jlg dose of quinpirole was successfully antagonized by pre-treatment with an equimolar dose of U99194A maleate (p < 0.008) but not with raclopride. The 7Jlg amphetamine response was also antagonized with an equimolar dose of raclopride. Based on these results, it seems that low doses of quinpirole, particularly the 0.25 Jlg dose, are capable of increasing 50 kHz vocalizations in rats and do so by activation of the D3 dopamine receptor. This is not a biphasic response as seen with locomotor studies. Also noteworthy is the increase in frequency modulated 50 kHz calls elicited by the 0.25 Jlg dose of quinpirole indicating a possible increase in positive affect.
Resumo:
This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.
Resumo:
This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-mu m P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-mu m-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Objective: To examine the basis for local wall motion abnormalities commonly seen in patients with ischemic heart disease, computer-controlled isolated muscle studies were carried out. Methods: Force patterns of physiologically sequenced contractions (PSCs) from rat left ventricular muscle preparations under well-oxygenated conditions and during periods of hypoxia and reoxygenation were recorded and stored in a computer. Force patterns of hypoxic-reoxygenating and oxygenated myocardium were applied to oxygenated and hypoxic-reoxygenating myocardium, respectively. Results: Observed patterns of shortening and lengthening closely resemble those obtained from ischemic and non-ischemic myocardial segments using ultrasonic crystals in intact dog hearts during coronary occlusion and reperfusion, and are similar to findings reported in angiographic studies of humans with coronary artery disease. Conclusion: The current study, demonstrating motions of oxygenated isolated muscle preparations which are similar to those in perfused segments of intact hearts with regional ischemia, supports the concept that the multiple motions of both ischemic and non-ischemic segments seen in regional myocardial disease can be explained by interactions of strongly and weakly contracting muscle during the physiologic cardiac cycle.
Resumo:
Measurements of ultrasonic attenuation and velocity in milk and low concentration water-in-oil (W/O) emulsion were conducted, using a measurement cell with a double-element transducer that eliminates diffraction losses. The milk is characterized by the attenuation coefficient, while in the case of water-in-oil emulsions, the characterization is best represented by the propagation velocity.
Resumo:
The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS). and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day: alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS. and decreased at the 10th day. Groups1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.
Resumo:
The effects of low-intensity pulsed ultrasound on wound healing were evaluated at the graft-cornea transition in dogs following lamellar keratoplasty using tunica vaginalis preserved in 98% glycerin. Twenty-one dogs were subdivided into three groups of seven animals. The first group (W/US) received daily treatment of low-intensity pulsed ultrasound (20 mW/cm 2) for 15 min for the first 10 days post surgery. The second group (N/US) was submitted to the same procedure but with the ultrasound apparatus turned off. The third group, the control (CO), underwent the surgical procedure only. The animals were clinically evaluated during the initial (1-15 days), intermediate (16-30 days) and late (31-120 days) postoperative period. The corneas were evaluated by light microscopy at 1, 3, 7, 15, 30, 60 and 120 days after surgery. Clinically, there were no differences which would promote an advantage to any of the treatments. Light microscopy, however, revealed more extensive vascularization and more advanced wound healing in the W/US group, as well as a tendency towards early graft incorporation. Based on the present results, low-intensity pulsed ultrasound shows advantages, especially in situations where trophic support is a mandatory condition, facilitating better graft incorporation and rapid recovery of stromal organization.
Resumo:
Background: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia. Methods: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography. Results: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 ± 13 vs. 383 ± 84 μg/g in noninfected piglets and 10 ± 3 vs. 129 ± 108 μg/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 ± 141 μg/g; P < 0.001) and no significant change in infected piglets (111 ± 104 μg/g). Conclusion: Nebulization of ceftazidime induced a 5- to 30-fold increase in lung tissue concentrations as compared with intravenous administration. Using a helium-oxygen mixture as the carrying gas of the aerosol induced a substantial additional increase in lung deposition in noninfected piglets but not in piglets with experimental bronchopneumonia. © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.
Resumo:
This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.
Resumo:
Root canal treatment is a frequently performed dental procedure and is carried out on teeth in which irreversible pulpitis has led to necrosis of the dental pulp. Removal of the necrotic tissue remnants and cleaning and shaping of the root canal are important phases of root canal treatment. Treatment options include the use of hand and rotary instruments and methods using ultrasonic or sonic equipment. OBJECTIVES: The objectives of this systematic review of randomized controlled trials were to determine the relative clinical effectiveness of hand instrumentation versus ultrasonic instrumentation alone or in conjunction with hand instrumentation for orthograde root canal treatment of permanent teeth. MATERIAL AND METHODS: The search strategy retrieved 226 references from the Cochrane Oral Health Group Trials Register (7), the Cochrane Central Register of Controlled Trials (CENTRAL) (12), MEDLINE (192), EMBASE (8) and LILACS (7). No language restriction was applied. The last electronic search was conducted on December 13th, 2007. Screening of eligible studies was conducted in duplicate and independently. RESULTS: Results were to be expressed as fixed-effect or random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. No eligible randomized controlled trials were identified. CONCLUSIONS: This review illustrates the current lack of published or ongoing randomized controlled trials and the unavailability of high-level evidence based on clinically relevant outcomes referring to the effectiveness of ultrasonic instrumentation used alone or as an adjunct to hand instrumentation for orthograde root canal treatment. In the absence of reliable research-based evidence, clinicians should base their decisions on clinical experience, individual circumstances and in conjunction with patients' preferences where appropriate. Future randomized controlled trials might focus more closely on evaluating the effectiveness of combinations of these interventions with an emphasis on not only clinically relevant, but also patient-centered outcomes.
Resumo:
ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.
Resumo:
INTRODUCTION: Vasopressin has been shown to increase blood pressure in catecholamine-resistant septic shock. The aim of this study was to measure the effects of low-dose vasopressin on regional (hepato-splanchnic and renal) and microcirculatory (liver, pancreas, and kidney) blood flow in septic shock. METHODS: Thirty-two pigs were anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n = 8 in each). Group S (sepsis) and group SV (sepsis/vasopressin) were exposed to fecal peritonitis. Group C and group V were non-septic controls. After 240 minutes, both septic groups were resuscitated with intravenous fluids. After 300 minutes, groups V and SV received intravenous vasopressin 0.06 IU/kg per hour. Regional blood flow was measured in the hepatic and renal arteries, the portal vein, and the celiac trunk by means of ultrasonic transit time flowmetry. Microcirculatory blood flow was measured in the liver, kidney, and pancreas by means of laser Doppler flowmetry. RESULTS: In septic shock, vasopressin markedly decreased blood flow in the portal vein, by 58% after 1 hour and by 45% after 3 hours (p < 0.01), whereas flow remained virtually unchanged in the hepatic artery and increased in the celiac trunk. Microcirculatory blood flow decreased in the pancreas by 45% (p < 0.01) and in the kidney by 16% (p < 0.01) but remained unchanged in the liver. CONCLUSION: Vasopressin caused marked redistribution of splanchnic regional and microcirculatory blood flow, including a significant decrease in portal, pancreatic, and renal blood flows, whereas hepatic artery flow remained virtually unchanged. This study also showed that increased urine output does not necessarily reflect increased renal blood flow.
Resumo:
INTRODUCTION To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. METHODS Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. RESULTS Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. CONCLUSIONS Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals.