930 resultados para UNCERTAINTY PRINCIPLE
Resumo:
Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.
Resumo:
This thesis has two basic themes: the investigation of new experiments which can be used to test relativistic gravity, and the investigation of new technologies and new experimental techniques which can be applied to make gravitational wave astronomy a reality.
Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. The key advance in techno1ogy is the development of resonant sensing systems with very low levels of dissipation. Chapter 1 considers three such systems (torque balances, dielectric monocrystals, and superconducting microwave resonators), and it proposes eight laboratory experiments which use these systems as detectors. For each experiment it describes the dominant sources of noise and the technology required.
The coupled electro-mechanical system consisting of a microwave cavity and its walls can serve as a gravitational radiation detector. A gravitational wave interacts with the walls, and the resulting motion induces transitions from a highly excited cavity mode to a nearly unexcited mode. Chapter 2 describes briefly a formalism for analyzing such a detector, and it proposes a particular design.
The monitoring of a quantum mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. Chapter 3 reviews the standard techniques for monitoring the oscillator; and it introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator.
The standard method for monitoring the oscillator is the "amplitude- and-phase" method (position or momentum transducer with output fed through a linear amplifier). The accuracy obtainable by this method is limited by the uncertainty principle. To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well-known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak force, but which cannot provide good accuracy in determining its precise time-dependence. Chapter 3 considers extensively a new type of quantum nondemolition measurement - a "back-action-evading" measurement of the real part X1 (or the imaginary part X2) of the oscillator's complex amplitude. In principle X1 can be measured arbitrarily quickly and arbitrarily accurately, and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force.
Chapter 3 describes explicit gedanken experiments which demonstrate that X1 can be measured arbitrarily quickly and arbitrarily accurately, it considers approximate back-action-evading measurements, and it develops a theory of quantum nondemolition measurement for arbitrary quantum mechanical systems.
In Rosen's "bimetric" theory of gravity the (local) speed of gravitational radiation vg is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for vg to be less than the speed of light. Chapter 4 shows that emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on vg and the cosmological boundary values today, and observations of synchrotron radiation from compact radio sources place limits on the cosmological boundary values in the past.
Resumo:
Focal beam analysis is a method for assessment of acquisition geometries that is directly linked to pre-stack migration. About dealing with the complex subsurface structures, the conventional survey design methods which do not take into account the subsurface are no longer valid. Based on the Fourier finite-difference (FFD) large-step wave field extrapolation and Born-Kirchhoff (BK) small-step wavefield interpolation, the thesis presents a rapid resolution analysis of 3D seismic survey design by focal beams in complicated media. Subsequently, The SEG/EAEG salt model is used to illustrate the method. Based on the focal beam resolution definition, each kind of influence factor is discussed. The focal beam analysis usually is carried out in a single frequency, but the actual seismic waves always contain a frequency bandwidth. In this thesis, theoretical relationship between focal beam analysis and frequency is derived. Since the effects of focal beam analysis are linear with frequency simply, the multi-frequency focal beam analysis using interpolation is developed. At the same time, the resolution of different frequency bandwidth is interconvertible in accordance with Signal uncertainty principle. The resolution of all frequency bands can be calculated by using only a few focal beam analysis for a seismic survey. In the last section of this thesis, I propose a new approach to predicting acquisition footprint, based on the assumption of Common-Middle-Point stack without constructing a special velocity model. The approach is a simplistic analytical method in which the acquisition footprint pattern is a weighted, linear summation of limited-offset fold-of-stack plots. Because the value of acquisition can be got by quantificational and rapidly calculating, we can exactly do a comparative analysis among different plans of seismic survey by this method.
Resumo:
We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.
Resumo:
The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.
Resumo:
Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics. © 2006 American Institute of Physics.
Resumo:
We show how mapping techniques inherent to N2-dimensional discrete phase spaces can be used to treat a wide family of spin systems which exhibits squeezing and entanglement effects. This algebraic framework is then applied to the modified Lipkin-Meshkov-Glick (LMG) model in order to obtain the time evolution of certain special parameters related to the Robertson- Schrödinger (RS) uncertainty principle and some particular proposals of entanglement measure based on collective angular-momentum generators. Our results reinforce the connection between both the squeezing and entanglement effects, as well as allow to investigate the basic role of spin correlations through the discrete representatives of quasiprobability distribution functions. Entropy functionals are also discussed in this context. The main sequence correlations → entanglement → squeezing of quantum effects embraces a new set of insights and interpretations in this framework, which represents an effective gain for future researches in different spin systems. © 2013 World Scientific Publishing Company.
Montagem de um conjunto experimental destinado à verificação do princípio da incerteza de Heisenberg
Resumo:
In this paper we present the an experimental setup to check the Heisenberg uncertainty principle. The description of the experimental setup and of the theoretical foundations is aimed at promoting the familiarization of the students with the involved concepts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a succinct review of the canonical formalism of classical mechanics, followed by a brief review of the main representations of quantum mechanics. We emphasize the formal similarities between the corresponding equations. We notice that these similarities contributed to the formulation of quantum mechanics. Of course, the driving force behind the search of any new physics is based on experimental evidence
Resumo:
The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink- like potentials (similar to tanh gamma x) is investigated. The problem is mapped into the exactly solvable Sturm - Liouville problem with the Rosen - Morse potential and exact bounded solutions for particles and antiparticles are found. The behavior of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.