868 resultados para UBIQUITIN-PROTEASOME PATHWAY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the anti-tumor activity of Amblyomin-X, a serine protease Kunitz-type inhibitor. Amblyomin-X induced tumor mass regression and decreased number of metastatic events in a B16F10 murine melanoma model. Alterations on expression of several genes related to cell cycle were observed when two tumor cell lines were treated with Amblyomin-X. PSMB2, which encodes a proteasome subunit, was differentially expressed, in agreement to inhibition of proteasomal activity in both cell lines. In conclusion, our results indicate that Amblyomin-X selectively acts on tumor cells by inducing apoptotic cell death, possibly by targeting the ubiquitin-proteasome system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7- parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7- parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ERM is a member of the ETS transcription factor family. High levels of the corresponding mRNA are detected in a variety of human breast cancer cell lines, as well as in aggressive human breast tumors. As ERM protein is almost undetectable in these cells, high degradation of this transcription factor has been postulated. Here we have investigated whether ERM degradation might depend on the proteasome pathway. We show that endogenous and ectopically expressed ERM protein is short-lived protein and undergoes proteasome-dependent degradation. Deletion mutagenesis studies indicate that the 61 C-terminal amino acids of ERM are critical for its proteolysis and serve as a degradation signal. Although ERM conjugates with ubiquitin, this post-translational modification does not depend on the C-terminal domain. We have used an Ets-responsive ICAM-1 reporter plasmid to show that the ubiquitin-proteasome pathway can affect transcriptional function of ERM. Thus, ERM is subject to degradation via the 26S proteasome pathway, and this pathway probably plays an important role in regulating ERM transcriptional activity. © 2007 Nature Publishing Group. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitin proteasome pathway plays a critical role in regulating many processes in the cell which are important for tumour cell growth and survival. Inhibition of proteasome function has emerged as a powerful strategy for anti-cancer therapy. Clinical validation of the proteasome as a therapeutic target was achieved with bortezomib and has prompted the development of a second generation of proteasome inhibitors with improved pharmacological properties. This review summarises the main mechanisms of action of proteasome inhibitors in cancer, the development of proteasome inhibitors as therapeutic agents and the properties and progress of next generation proteasome inhibitors in the clinic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le virus de l’immunodéficience humaine de type 1 (VIH-1), l’agent étiologique du SIDA, est un rétrovirus complexe arborant plusieurs protéines accessoires : Nef, Vif, Vpr, et Vpu. Celles-ci sont impliquées dans la modulation de la réplication virale, dans l’évasion immunitaire et dans la progression de la pathogenèse du SIDA. Dans ce contexte, il a été démontré que la protéine virale R (Vpr) induit un arrêt de cycle cellulaire en phase G2. Le mécanisme par lequel Vpr exerce cette fonction est l’activation, ATR (Ataxia telangiectasia and Rad3 related)-dépendante, du point de contrôle de dommage à l’ADN, mais les facteurs et mécanismes moléculaires directement impliqués dans cette activité demeurent inconnus. Afin d’identifier de nouveaux facteurs cellulaires interagissant avec Vpr, nous avons utilisé une purification d’affinité en tandem (TAP) pour isoler des complexes protéiques natifs contenant Vpr. Nous avons découvert que Vpr s’associait avec CRL4A(VprBP), un complexe cellulaire d’E3 ubiquitine ligase, comprenant les protéines Cullin 4A, DDB1 (DNA damage-binding protein 1) et VprBP (Vpr-binding protein). Nos études ont mis en évidence que le recrutement de la E3 ligase par Vpr était nécessaire mais non suffisant pour l’induction de l’arrêt de cycle cellulaire en G2, suggérant ainsi que des événements additionnels seraient impliqués dans ce processus. À cet égard, nous apportons des preuves directes que Vpr détourne les fonctions de CRL4A(VprBP) pour induire la polyubiquitination de type K48 et la dégradation protéosomale de protéines cellulaires encore inconnues. Ces événements d’ubiquitination induits par Vpr ont été démontrés comme étant nécessaire à l’activation d’ATR. Finalement, nous montrons que Vpr forme des foyers ancrés à la chromatine co-localisant avec VprBP ainsi qu’avec des facteurs impliqués dans la réparation de l’ADN. La formation de ces foyers représente un événement essentiel et précoce dans l’induction de l’arrêt de cycle cellulaire en G2. Enfin, nous démontrons que Vpr est capable de recruter CRL4A(VprBP) au niveau de la chromatine et nous apportons des preuves indiquant que le substrat inconnu ciblé par Vpr est une protéine associée à la chromatine. Globalement, nos résultats révèlent certains des ménanismes par lesquels Vpr induit des perturbations du cycle cellulaire. En outre, cette étude contribue à notre compréhension de la modulation du système ubiquitine-protéasome par le VIH-1 et son implication fonctionnelle dans la manipulation de l’environnement cellulaire de l’hôte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN: We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS: Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (pFDR=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS: Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.