920 resultados para UAV, velivolo a pilotaggio remoto, folding wing
Resumo:
This study presents the procedure followed to make a prediction of the critical flutter speed for a composite UAV wing. At the beginning of the study, there was no information available on the materials used for the construction of the wing, and the wing internal structure was unknown. Ground vibration tests were performed in order to detect the structure’s natural frequencies and mode shapes. From tests, it was found that the wing possesses a high stiffness, presenting well separated first bending and torsional natural frequencies. Two finite element models were developed and matched to experimental results. It has been necessary to introduce some assumptions, due to the uncertainties regarding the structure. The matching process was based on natural frequencies’ sensitivity with respect to a change in the mechanical properties of the materials. Once experimental results were met, average material properties were also found. Aerodynamic coefficients for the wing were obtained by means of a CFD software. The same analysis was also conducted when the wing is deformed in its first four mode shapes. A first approximation for flutter critical speed was made with the classical V - g technique. Finally, wing’s aeroelastic behavior was simulated using a coupled CFD/CSD method, obtaining a more accurate flutter prediction. The CSD solver is based on the time integration of modal dynamic equations, requiring the extraction of mode shapes from the previously performed finite-element analysis. Results show that flutter onset is not a risk for the UAV, occurring at velocities well beyond its operative range.
Resumo:
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype system
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
This paper presents a nonlinear gust-attenuation controller to stabilize velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in the presence of wind gusts. The proposed controller aims to achieve a steady-state flight condition such that the host UAV can avoid airspace collision with other UAVs during the cruise flight. Based on the typical UAV model capturing flight aerodynamics, a nonlinear Hinf controller is developed with rapid response property in consideration of actuator constraints. Simulations are conducted for the Shadow UAV to verify performance of the proposed controller. Comparative studies with the proportional-integral derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight with safety guarantees.
Resumo:
This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.
Resumo:
This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
There has recently been a rapidly increasing interest in solar powered UAVs. With the emergence of high power density batteries, long range and low-power micro radio devices, airframes, and powerful micro-processors and motors, small/micro UAVs have become applicable in civilian applications such as remote sensing, mapping, traffic monitoring, search and rescue. The Green Falcon UAV is an innovative project from Queensland University of Technology and has been developed and tested during these past years. It comprises a wide range of subsystems to be analyses and studied such as Solar Panel Cells, Gas sensor, Aerodynamics of the wing and others. Previous test however, resulted in damage to the solar cells and some of the subsystems including motor and ESC. This report describes the repair and verification process followed to improve the efficiency of the Green Falcon UAV. The report shows some of the results obtained in previous static and flight tests as well as some of recommendations.
Resumo:
A pursuer UAV tracking and loitering around a target is the problem analyzed in this thesis. The UAV is assumed to be a fixed-wing vehicle and constant airspeed together with bounded lateral accelerations are the main constraints of the problem. Three different guidance laws are designed for ensuring a continuos overfly on the target. Different proofs are presented to demonstrate the stability properties of the laws. All the algorithms are tested on a 6DoF Pioneer software simulator. Classic control design methods have been adopted to develop autopilots for implementig the simulation platform used for testing the guidance laws.
Resumo:
Uno dei problemi che ostacola la diffusione in ambito civile degli aerei senza pilota a bordo (UAV) è la gestione della sicurezza in volo. Gli UAV civili, infatti, popolando una regione di spazio aereo molto affollata e devono interagire con una moltitudine di altri mezzi aerei. Per questo motivo, risulta particolarmente critica l'implementazione di logiche di tipo Sense and Avoid, attraverso le quali un UAV deve essere in grado di "vedere" altri mezzi in rotta di collisione ed elaborare le azioni utili ad evitare l'impatto, decidendo se attuare una manovra autonoma di avoiding oppure delegarla al mezzo incontrato. Questa tesi descrive un primo approccio al problema del riconoscimento (Sense) dei mezzi aerei che un generico velivolo UAV può incontrare durante la normale condotta del volo. In particolare, si descrivono le strategie impiegate e gli ambienti software utilizzati per testare alcune procedure di riconoscimento delle immagini applicabili alla fase di detection dell'intruder, situazione tipica del caso di studio. I risultati sperimentali ottenuti dalla progettazione e dallo sviluppo di un apposito software, consistono nell'implementazione e successiva valutazione di diverse tecniche, individuando le criticità del problema.
Resumo:
Este trabalho tem por finalidade mostrar a aplicação e a utilização de um aeromodelo elétrico de asa fixa, também conhecido como veículo aéreo não tripulado (VANT), com controle manual ou automático, para coleta de dados e imagens em propriedades rurais, com a premissa de auxiliar os gestores no processo de gestão e tomada de decisão. A metodologia utilizada para a realização das coletas foi feita por meio de voos programados em dias e condições diferentes, para verificação e análise de desempenho do aeromodelo. Os resultados obtidos com os voos foram acima do esperado, gerando excelentes imagens e dados confiáveis. Sendo assim, pôde-se concluir que a utilização de VANTs, em coletas de dados e imagens em propriedades rurais foi satisfatória e auxiliou os gestores no processo de gerenciamento e rotacionamento de animais no pasto, uma vez que as imagens permitiram uma boa visualização e o aeromodelo desenvolvido cumpriu o seu objetivo com bom desempenho e agilidade.