578 resultados para Turtle Caretta-caretta


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Management strategies to protect endangered species primarily focus on safeguarding habitats currently perceived as important (due to high-density use, rarity or contribution to the biological cycle), rather than sites of future ecological importance. This discrepancy is particularly relevant for species inhabiting beaches and coastal areas that may be lost due to sea-level rise over the next 100 years through climate change. Here, we modelled four sea-level rise (SLR) scenarios (0.2, 0.6, 0.9 and 1.3 m) to determine the future vulnerability and viability of nesting habitat (six distinct nesting beaches totalling about 6 km in length) at a key loggerhead sea turtle (Caretta caretta) rookery (Zakynthos, Greece) in the Mediterranean. For each of the six nesting beaches, we identified (1) the area of beach currently used by turtles, (2) the area of the beach anticipated to become inundated under each SLR, (3) the area of beach anticipated to become unsuitable for nesting under each SLR, (4) the potential for habitat loss under the examined SLR, and (5) the extent to which the beaches may shift in relation to natural (i.e. cliffs) and artificial (i.e. beach front development) physical barriers. Even under the most conservative 0.2 m SLR scenario, about 38% (range: 31–48%) total nesting beach area would be lost, while an average 13% (range: 7–17%) current nesting beach area would be lost. About 4 km length of nesting habitat (representing 85% of nesting activity) would be lost under the 0.9 m scenario, because cliffs prevent landward beach migration. In comparison, while the other 2 km of beach (representing 15% nests) is also at high risk, it has the capacity for landward migration, because of an adjoining sand-dune system. Therefore, managers should strengthen actions on this latter area, as a climatically critical safeguard for future sea turtle nesting activity, in parallel to regularly assessing and revising measures on the current high-use nesting habitats of this important Mediterranean loggerhead population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] Marine turtles undergo dramatic ontogenic changes in body size and behavior, with the loggerhead sea turtle, Caretta caretta, typically switching from an initial oceanic juvenile stage to one in the neritic, where maturation is reached and breeding migrations are subsequently undertaken every 2-3 years [1-3]. Using satellite tracking, we investigated the migratory movements of adult females from one of the world's largest nesting aggregations at Cape Verde, West Africa. In direct contrast with the accepted life-history model for this species [4], results reveal two distinct adult foraging strategies that appear to be linked to body size. The larger turtles (n = 3) foraged in coastal waters, whereas smaller individuals (n = 7) foraged oceanically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Temperature was recorded in 23 nests of the loggerhead turtle (Caretta caretta) and control sites of nest depth at Alagadi (35 degrees 33'N, 33 degrees 47'E), Northern Cyprus, eastern Mediterranean. Control site sand temperature was found to be highly correlated with mean daily air temperature and mean nest temperature. Mean temperature in nests ranged from 29.5 degreesC to 33.2 degreesC, with mean temperature in the middle third of incubation ranging from 29.3 degreesC to 33.7 degreesC. Hatching success was significantly correlated with incubation temperature, with nests experiencing very high temperatures exhibiting low hatching success. All nests demonstrated regular diel variation in temperature with mean daily fluctuations ranging from 0.3 degreesC to 1.4 degreesC. Increase in temperature above that of the prevailing sand temperature attributed to metabolic heating was clearly demonstrated in 14 of 15 clutches, with the mean level of metabolic heating of all nests being 0.4 degreesC. However, the level of metabolic heating varied markedly throughout the incubation period with levels being significantly higher in the final third of incubation. Incubation duration was found to be significantly correlated to both the mean temperature of nests throughout the incubation period and during the middle third of incubation. The relationship between incubation duration and mean incubation temperature was used to estimate mean incubation temperatures at most major nesting sites throughout the Mediterranean from available data on incubation durations, showing that mean incubation temperature is likely to be above 29.0 degreesC at most sites in most seasons. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: Tracking the dispersal patterns and habitat use of migratory species is necessary to delineate optimal areas for protection, with large sample sizes being more representative of the population. Here, we examine the dispersal patterns of a key Mediterranean loggerhead turtle (Caretta caretta) breeding population to identify priority foraging sites for protection. Location: Zakynthos Island, Greece and the wider Mediterranean. Method: We examined the dispersal patterns and foraging sites of 75 adult loggerheads (n = 38 males and 37 females) tracked from the breeding area of Zakynthos Island (Greece) from 2004 to 2011. We then combined our data with published sea turtle literature to identify key foraging sites for protection. Results: While both males and females exhibited similar dispersal patterns, about 25% males remained < 100 km of Zakynthos, whereas all females (except one) migrated > 200 km. Integration of our data with the wider literature isolated 10 core sites in proximity to existing protected areas, which could potentially protect 64% of the Zakynthos population, while five sites support individuals from at least 10 other loggerhead breeding populations. Main conclusions: Due to the widespread availability of neritic foraging grounds across the Mediterranean, sea turtles from Zakynthos exhibit disparate dispersal patterns. However, protecting only a few objectively defined important sites can encompass a large proportion of the foraging areas used and hence have considerable conservation benefit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1Reproductive fitness is often compromised at the margins of a species’ range due to sub-optimal conditions.2Set against this backdrop, the Mediterranean's largest loggerhead sea turtle (Caretta caretta) rookery at Zakynthos (Greece) presents a conundrum, being at a very high latitude for this species, yet hosting a high concentration of nesting.3We used visual surveys combined with global positioning system (GPS) tracking to show that at the start of the breeding season, individuals showed microhabitat selection, with females residing in transient patches of warm water. As the sea warmed in the summer, this selection was no longer evident.4As loggerhead turtles are ectothermic, this early season warm-water selection presumably speeds up egg maturation rates before oviposition, thereby allowing more clutches to be incubated when sand conditions are optimal during the summer.5Active selection of warm waters may allow turtles to initiate nesting at an earlier date.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Maintaining a high and stable body temperature is often critical for female ectotherms during reproduction. Yet this strategy may be energetically costly, and therefore challenging, during this period of already high-energy demand. 2. Here, the 6-week deployment of tri-axial accelerometers (n = 6) on a marine ectotherm, the loggerhead turtle (Caretta caretta), reproducing at the northern limit of the species’ breeding range (i.e. in a thermally dynamic environment) revealed the behavioural mechanisms underlying its energy management strategy during the breeding season. 3. The estimated activity levels of female loggerheads using overall dynamic body acceleration (ODBA) were high during the breeding season, suggesting that marine turtles may not be able to remain inactive for long periods in the same manner as terrestrial ectotherms, because of the thermally dynamic nature of their environment. 4. However, activity levels were not constant throughout the season, being impacted by both ambient water temperature and female reproductive status. In cold water at the beginning of the nesting season, high levels of activity suggested that females behaviourally thermoregulated by seeking out warm water patches along the shoreline. Interactions with male turtles (courtship and/or avoidance) may also explain this high level of activity. As sea temperatures warmed up and the amount of energy devoted to reproduction probably increased, the turtles spent more time resting during long sequential flat-bottomed dives, and reduced any unnecessary locomotory activity. 5. Turtles may therefore adjust their activity patterns in response to seasonal variations in abiotic (i.e. ambient temperature) and biotic (i.e. reproductive status) factors. This may help minimize activity-linked metabolic rate and maximize reproductive output over a season while breeding in thermally dynamic environments. 6. A mechanistic model gave support to these empirical results. The model revealed that actively maintaining high and stable body temperature is of clear benefit to female turtles at temperate breeding sites. While energetically costly, such active thermoregulatory behaviour may speed up egg maturation, allowing turtles to initiate nesting earlier in the season, and hence maximize reproductive output.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aggressive behaviour between females of the same species is not widely documented, particularly in marine vertebrates. During a 3 yr in-water survey at the temperate loggerhead sea turtle Caretta caretta breeding area of Zakynthos, Greece, female–female interactions comprised 4% of all female loggerhead sighting events (n = 60 out of 1449 events). Male–female interactions comprised an additional 4% of sighting events, while 92% were of solitary females. The structure of interactions was analysed for 58 of these sighting events, each lasting an average of 3.4 min (SD ± 1) and comprising a total of 3.1 h observation time. We found that interactions involved ritualized escalation in behaviour from passive threat displays (e.g. head–tail circling) to aggressive combat (e.g. sparring). We suggest that circling individuals evaluate opponent size, sparring individuals test opponent strength, and that the positioning of the prehensile tail signals motivational intent to either escalate or abort. The presence of intruder females triggered a passive response in 100% of events involving basking and swimming turtles (n = 19); although residents resting on the seabed only responded on 69% of occasions (n = 27), their response was almost 4 times more likely to escalate to one of aggression. Our results suggest that certain sites may be preferentially sought after and defended by sea turtles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Without genetic variation, species cannot cope with changing environments, and evolution does not proceed. In endangered species, adaptive potential may be eroded by decreased population sizes and processes that further reduce gene flow such as philopatry and local adaptations. Here, we focused on the philopatric and endangered loggerhead sea turtle (Caretta caretta) nesting in Cape Verde as a model system to investigate the link between adaptive potential and philopatry. We produced a dataset of three complementary genomic regions to investigate female philopatric behaviour (mitochondrial DNA), male-mediated gene flow (microsatellites) and adaptive potential (major histocompatibility complex, MHC). Results revealed genetically distinct nesting colonies, indicating remarkably small-scale philopatric behaviour of females. Furthermore, these colonies also harboured local pools of MHC alleles, especially at the margins of the population's distribution, which are therefore important reserves of additional diversity for the population. Meanwhile, directional male-mediated gene flow from the margins of distribution sustains the adaptive potential for the entire rookery. We therefore present the first evidence for a positive association between philopatry and locally adapted genomic regions. Contrary to expectation, we propose that philopatry conserves a high adaptive potential at the margins of a distribution, while asymmetric gene flow maintains genetic connectivity with the rest of the population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the decisions made by hatchery managers around the world is what degree of shading and nest depth are required to maximise the production of high-quality hatchlings at optimal sex ratios. The primary objectives of this study were to determine the effects of (1) hatchery shading and nest depth on nest temperatures and emergence lag, and (2) nest temperatures and nest depth on hatchling sex ratio and quality. In 2001, 26 Chelonia mydas clutches from Ma'Daerah beach, Terengganu, Malaysia, were relocated alternatively at depths of 50 cm and 75 cm into a 70%-shaded and a 100%-shaded hatchery. Data loggers were placed into the centre of each relocated clutch to record the temperature every hour over the course of incubation. When the hatchlings emerged, a sample of the clutch was run, measured and weighed and a separate sample was examined histologically for sex characteristics. Nest temperatures ranged between 28 degrees C and 30 degrees C and generally showed increases over the second half of incubation due to metabolic heating of the clutch. There was no significant correlation found between nest temperature and any of the hatchling parameters measured. Hatchlings from 75-cm-deep nests had a longer emergence lag (46.4 (+/- 10.2) h) than hatchlings from 50-cm-deep nests. Hatch and emergence success were similar to those of natural populations and hatchling sex ratios were male dominant, with an average of 72% males. There was a poor correlation between mean middle-third incubation temperatures and sex ratio. Hatchlings from 75-cm-deep nests had similar running speeds but lower condition index than their conspecifics from 50-cm-deep nests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] The 70 km of white sandy beaches of Boa Vista island in Cape Verde harbours one of the largest rookeries of the endangered loggerhead sea turtle, Caretta caretta. From middle June to early October, approximately 2000 to 4000 females lay up to 20000 nests annually. However, female beach selection, nesting success and nest density strongly varies among beaches and spatial patterns of nest abundance and distribution are relatively constant among seasons. The numbers of nesting activities and nests have been recorded along all beaches of the island during four nesting seasons (2007-2010)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] Because of the extensive migrations of marine turtles through the ocean, many aspects of their biology have been unknown for a long time. However, much information has been recently gained from genetic studies and population monitoring of female turtles at their nesting sites. In contrast, still very little is known on the genetic diversity, population structure and dispersal patterns of the male breeding population, mainly because of the difficulty of capturing and monitoring them at sea. The aim of this study is to assess the genetic patterns of the male breeding population of the loggerhead turtle, Caretta caretta, using a non invasive approach and compare them to the female breeding population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here, we show how seasonal changes in animal density drive strategic shifts in the activities of wildlife-watching operators. These shifts result in high viewing intensity when animal densities are low, highlighting the need for modifications to existing wildlife-watching guidelines. We used the endangered loggerhead sea turtle Caretta caretta as a model species that exhibits staggered departure from an important breeding area (Zakynthos, Greece, Mediterranean) over a 2-month period (July to August) when tourism is at a peak, to investigate changes in wildlife-watching strategies, zoning effectiveness and voluntary guideline compliance over time. We used a combination of direct land-based observations, global positioning system tracking (of wildlife-watching vessels and turtles) and models. The modelled number of turtles present in the breeding area decreased from >200 in July to <50 in August, while the intensity of turtle-viewing increased from a mean 1.5 to 6.1 wildlife-watching vessels per turtle-viewing event (i.e. concurrent and consecutive vessels observing a single turtle) over the same period, respectively. During this period, the wildlife-watching strategy changed and compliance to guidelines reduced (exacerbated by recreational vessels). However, wildlife-watching activity was limited to a highly restricted 0.95-km2 nearshore area, overlapping with just 9.5% of the core habitat area used by turtles. Our results have broad implications (whale watching etc.) by showing the importance of taking the number of animals available for viewing into consideration when assessing wildlife-watching activity and when designing viewing guidelines, particularly for populations where numbers noticeably fluctuate.