977 resultados para Turbulent channel flows
Resumo:
The velocity distribution between two sidewalls is; M-shaped for the MHD channel flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbers R(m) much less than 1, M, N much greater than 1, and sigma
Resumo:
The Taylor series expansion method is used to analytically calculate the Eulerian and Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correlation functions can be obtained from the series expansions. Especially, the propagation velocity and sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities mainly determine the space-time correlations.
Resumo:
Hydrophobic surface benefits for drag reduction. Min and Kim[1] do the first Direct Numerical Simulation on drag reduction in turbulent channel flow. And Fukagata and Kasagi[2] make some theoretical analysis based on Dean[3]'s formula and some observations in the DNS results. Using their theory, they conclude that drag reduction is possible in large Reynolds number. Both Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed in our research. How the LES behaving in the turbulent channel flow with hydrophobic surface is examined. Original Smagorinsky model and its Dynamical model are used in LES. The slip velocities predicted by LES using Dynamical model are in good agreement with DNS as shown in the Figure. Although the percentage of drag reduction predicted by LES shows some discrepancies, it is in the error limit for industrial flow. First order and second order moments of LES are also examined and compared with DNS's results. The first-order moments is calculated well by LES. But there are some discrepancies of second-order moments between LES and DNS. [GRAPHICS]
Resumo:
The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been devel- oped to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries.
Resumo:
This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.
The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.
This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).
Resumo:
Mean velocity profiles were measured in the 5” x 60” wind channel of the turbulence laboratory at the GALCIT, by the use of a hot-wire anemometer. The repeatability of results was established, and the accuracy of the instrumentation estimated. Scatter of experimental results is a little, if any, beyond this limit, although some effects might be expected to arise from variations in atmospheric humidity, no account of this factor having been taken in the present work. Also, slight unsteadiness in flow conditions will be responsible for some scatter.
Irregularities of a hot-wire in close proximity to a solid boundary at low speeds were observed, as have already been found by others.
That Kármán’s logarithmic law holds reasonably well over the main part of a fully developed turbulent flow was checked, the equation u/ut = 6.0 + 6.25 log10 yut/v being obtained, and, as has been previously the case, the experimental points do not quite form one straight line in the region where viscosity effects are small. The values of the constants for this law for the best over-all agreement were determined and compared with those obtained by others.
The range of Reynolds numbers used (based on half-width of channel) was from 20,000 to 60,000.
Resumo:
An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased from M∞ = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.