953 resultados para Turbomachines - fluid dynamics
Resumo:
For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
In-package pasteurization is the most used method for beer microbiological stabilization. The search for safer and better quality food has created a need to better understand the processes involved in producing it. However, little is known about the temperature and velocity profiles during the thermal processes of liquid foods in commercial packaging, which results in over-dimensioned processes to guarantee safety, decreasing the sensorial and nutritional characteristics of the product and increasing process costs. Simulations using Computational Fluid-Dynamics (CFD) have been used by various authors to evaluate those processes. The objective of the present paper was to evaluate the effect of packaging orientation in the pasteurization of beer in a commercial aluminum can using CFD. A heating process was simulated at 60 ºC up to 15 PUs (a conventional beer process, in which 1 Pasteurization Unit (PU) is equivalent to 1minute at 60 ºC). The temperature profile and convection current velocity along the process and the variation of the PUs were evaluated in relation to time considering the cans in the conventional, inverted, and horizontal positions. The temperature and velocity profiles were similar to those presented in the literature. The package position did not result in process improvement.
Resumo:
Food processes must ensure safety and high-quality products for a growing demand consumer creating the need for better knowledge of its unit operations. The Computational Fluid Dynamics (CFD) has been widely used for better understanding the food thermal processes, and it is one of the safest and most frequently used methods for food preservation. However, there is no single study in the literature describing thermal process of liquid foods in a brick shaped package. The present study evaluated such process and the influence of its orientation on the process lethality. It demonstrated the potential of using CFD to evaluate thermal processes of liquid foods and the importance of rheological characterization and convection in thermal processing of liquid foods. It also showed that packaging orientation does not result in different sterilization values during thermal process of the evaluated fluids in the brick shaped package.
Resumo:
Gravitational phase separation is a common unit operation found in most large-scale chemical processes. The need for phase separation can arise e.g. from product purification or protection of downstream equipment. In gravitational phase separation, the phases separate without the application of an external force. This is achieved in vessels where the flow velocity is lowered substantially compared to pipe flow. If the velocity is low enough, the denser phase settles towards the bottom of the vessel while the lighter phase rises. To find optimal configurations for gravitational phase separator vessels, several different geometrical and internal design features were evaluated based on simulations using OpenFOAM computational fluid dynamics (CFD) software. The studied features included inlet distributors, vessel dimensions, demister configurations and gas phase outlet configurations. Simulations were conducted as single phase steady state calculations. For comparison, additional simulations were performed as dynamic single and two-phase calculations. The steady state single phase calculations provided indications on preferred configurations for most above mentioned features. The results of the dynamic simulations supported the utilization of the computationally faster steady state model as a practical engineering tool. However, the two-phase model provides more truthful results especially with flows where a single phase does not determine the flow characteristics.
Resumo:
Exam questions and solutions for a third year maths course. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
The interannual variability of the hydrological cycle is diagnosed from the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models, both of which are forced by observed sea surface temperatures. The models produce a similar sensitivity of clear-sky outgoing longwave radiation to surface temperature of ∼2 W m−2 K−1, indicating a consistent and positive clear-sky radiative feedback. However, differences between changes in the temperature lapse-rate and the height dependence of moisture fluctuations suggest that contrasting mechanisms bring about this result. The GFDL model appears to give a weaker water vapor feedback (i.e., changes in specific humidity). This is counteracted by a smaller upper tropospheric temperature response to surface warming, which implies a compensating positive lapse-rate feedback.
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.