825 resultados para Tungsten alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium partial pressures of Mn over bcc Cr--Mn alloys have been measured using Knudsen cell technique in the temp. range 1200-1500K. The alloys in particulate form were contained in thoria crucibles inside Knudsen cells made of tungsten. The rates of mass loss of each cell under vacuum was monitered as a function of time at constant temp. using a microbalance. Activities exhibit mild negative deviations from Raoult's law, contrary to indications from an earlier study using a fused salt emf technique. The Cr--Mn system is characterized by negative enthalpy and excess entropy of mixing. There is close similarity between the composition dependence of enthalpy and excess entropy. These findings suggest strong vibrational and negligible magnetic contributions to excess entropy of mixing in bcc phase at high temp. 10 ref.--AA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the synthesis of a new class of gamma-gamma' cobalt-based superalloy that is free of tungsten as an alloying addition. It has much lower density and higher specific strength than the existing cobalt-based superalloys. The current superalloys have a base composition of Co-10Al and are further tuned by the addition of a binary combination of molybdenum and niobium, with the optimum composition of Co-10Al-5Mo-2Nb. The solvus temperature of the alloy (866 degrees C) can be further enhanced above 950 C by the addition of Ni to give the form Co-xNi-10Al-5Mo-2Nb, where x can be from 0 to 30 at.%. After heat treatment, these alloys exhibit a duplex microstructure with coherent cuboidal L1(2)-ordered precipitates (gamma') throughout the face-centred cubic matrix (gamma), yielding a microstructure that is very similar to nickel-based superalloys as well as recently developed Co-Al-W-based alloys. We show that the stability of the gamma' phase improves significantly with the nickel addition, which can be attributed to the increase in solvus temperature. A very high specific 0.2% proof stress of 94.3 MPa g(-1) cm(-3) at room temperature and 63.8 MPa g(-1) cm(-3) at 870 degrees C were obtained for alloy Co-30Ni-10Al-5Mo-2Nb. The remarkably high specific strength of these alloys makes this class of alloy a promising material for use at high temperature, including gas turbine applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first report of a tungsten-free cobalt-based superalloy having a composition Co-10Al-5Mo-2Nb. The alloy is strengthened by cuboidal precipitates of metastable Co-3(Al,Mo,Nb) distributed throughout the microstructure. The precipitates are coherent with the face-centred cubic gamma-Co matrix and possess ordered Ll(2) structure. The microstructure is identical to the popular gamma-gamma' type nickel-based superalloys and that of recently reported Co-Al-W-based alloys. Being tungsten free, the reported alloy has higher specific proof stress compared to existing cobalt-based superalloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a novel substitutional solid solution (W0.8Al0.2)C was synthesized by mechanically activated high-temperature reaction. X-ray diffraction was used for phase identification during the whole reaction process. Environment scanning electronic microscopy-field emission gun and energy dispersive x-ray were used to investigate the microstructure and the quantitative material composition of the specimen. (W(0.8)A(10.2))C was found to crystallize in the WC-type, and the cell parameters were a = 2.907(1) angstrom and c = 2.837(1) angstrom. The hardness of (W0.8Al0.2)C was tested to be 19.3 +/- 1 GPa, and the density was 13.19 +/- 0.05 g cm(-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An accurate knowledge of several metal-boron phase diagrams is important to evaluation of higher order systems such as metal-silicon-boron ternaries. The refinement and reassessment of phase diagram data is a continuous work, thus the reevaluation of metal-boron systems provides the possibility to confirm previous data from an investigation using higher purity materials and better analytical techniques. This work presents results of rigorous microstructural characterization of as-cast hafnium-boron alloys which are significant to assess the liquid composition associated to most of the invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 99.8%) and boron (minimum 99.5%) slices under argon atmosphere in water-cooled copper crucible with non consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a good agreement was found between our data and those from the currently accepted Hafnium-Boron phase diagram. The phases identified are αHfSS and B-RhomSS, the intermediate compounds HfB and HfB2 and the liquide L. The reactions are the eutectic L ⇔ αHfSS + HfB and L ⇔ HfB2 + B-Rhom, the peritectic L + HfB2 ⇔ HfB and the congruent formation of HfB2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the present time the principal uses for tungsten lie in the manufacture of ferro-alloys and tungsten steels. Due to it’s hardening and strengthening characteristics it holds an important position among steel hardening metals. The great rush for it’s production during the World War years clearly points to it’s importance in the manufacture of armament.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt was made to deposit a 50:50 copper-cobalt alloy from various sulfate electrolytes. No true 50:50 alloy was obtained but various mixtures of cobalt and copper rich crystals were deposited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El wolframio (W) y sus aleaciones se consideran los mejores candidatos para la construcción del divertor en la nueva generación de reactores de fusión nuclear. Este componente va a recibir las cargas térmicas más elevadas durante el funcionamiento del reactor ya que estará en contacto directo con el plasma. En los últimos años, después de un profundo análisis y siguiendo una estrategia de reducción de costes, la Organización de ITER tomó la decisión de construir el divertor integramente de wolframio desde el principio. Por ello, el wolframio no sólo actuará como material en contacto con el plasma (PFM), sino que también tendría aplicaciones estructurales. El wolframio, debido a sus excelentes propiedades termo-físicas, cumple todos los requerimientos para ser utilizado como PFM, sin embargo, su inherente fragilidad pone en peligro su uso estructural. Por tanto, uno de los principales objetivos de esta tesis es encontrar una aleación de wolframio con menor fragilidad. Durante éste trabajo, se realizó la caracterización microstructural y mecánica de diferentes materiales basados en wolframio. Sin embargo, ésta tarea es un reto debido a la pequeña cantidad de material suministrado, su reducido tamaño de grano y fragilidad. Por ello, para una correcta medida de todas las propiedades físicas y mecánicas se utilizaron diversas técnicas experimentales. Algunas de ellas se emplean habitualmente como la nanoindentación o los ensayos de flexión en tres puntos (TPB). Sin embargo, otras fueron especificamente desarrolladas e implementadas durante el desarrollo de esta tesis como es el caso de la medida real de la tenacidad de fractura en los materiales masivos, o de las medidas in situ de la tenacidad de fractura en las láminas delgadas de wolframio. Diversas composiciones de aleaciones de wolframio masivas (W-1% Y2O3, W-2% V-0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 y W-4% Ti-1% La2O3) se han estudiado y comparado con un wolframio puro producido en las mismas condiciones. Estas aleaciones, producidas por ruta pulvimetalúrgica de aleado mecánico (MA) y compactación isostática en caliente (HIP), fueron microstructural y mecánicamente caracterizadas desde 77 hasta 1473 K en aire y en alto vacío. Entre otras propiedades físicas y mecánicas se midieron la dureza, el módulo elástico, la resistencia a flexión y la tenacidad de fractura para todas las aleaciones. Finalmente se analizaron las superficies de fractura después de los ensayos de TPB para relacionar los micromecanismos de fallo con el comportamiento macroscópico a rotura. Los resultados obtenidos mostraron un comportamiento mecánico frágil en casi todo el intervalo de temperaturas y para casi todas las aleaciones sin mejoría de la temperatura de transición dúctil-frágil (DBTT). Con el fin de encontrar un material base wolframio con una DBTT más baja se realizó también un estudio, aún preliminar, de láminas delgadas de wolframio puro y wolframio dopado con 0.005wt.% potasio (K). Éstas láminas fueron fabricadas industrialmente mediante sinterizado y laminación en caliente y en frío y se sometieron posteriormente a un tratamiento térmico de recocido desde 1073 hasta 2673 K. Se ha analizado la evolución de su microestructura y las propiedades mecánicas al aumentar la temperatura de recocido. Los resultados mostraron la estabilización de los granos de wolframio con el incremento de la temperatura de recocido en las láminas delgadas de wolframio dopado con potasio. Sin embargo, es necesario realizar estudios adicionales para entender mejor la microstructura y algunas propiedades mecánicas de estos materiales, como la tenacidad de fractura. Tungsten (W) and tungsten-based alloys are considered to be the best candidate materials for fabricating the divertor in the next-generation nuclear fusion reactors. This component will experience the highest thermal loads during the operation of a reactor since it directly faces the plasma. In recent years, after thorough analysis that followed a strategy of cost reduction, the ITER Organization decided to built a full-tunsgten divertor before the first nuclear campaigns. Therefore, tungsten will be used not only as a plasma-facing material (PFM) but also in structural applications. Tungsten, due to its the excellent thermo-physical properties fulfils the requirements of a PFM, however, its use in structural applications is compromised due to its inherent brittleness. One of the objectives of this phD thesis is therefore, to find a material with improved brittleness behaviour. The microstructural and mechanical characterisation of different tunsgten-based materials was performed. However, this is a challenging task because of the reduced laboratory-scale size of the specimens provided, their _ne microstructure and their brittleness. Consequently, many techniques are required to ensure an accurate measurement of all the mechanical and physical properties. Some of the applied methods have been widely used such as nanoindentation or three-point bending (TPB) tests. However, other methods were specifically developed and implemented during this work such as the measurement of the real fracture toughness of bulk-tunsgten alloys or the in situ fracture toughness measurements of very thin tungsten foils. Bulk-tunsgten materials with different compositions (W-1% Y2O3, W-2% V- 0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 and W-4% Ti-1% La2O3) were studied and compared with pure tungsten processed under the same conditions. These alloys, produced by a powder metallurgical route of mechanical alloying (MA) and hot isostatic pressing (HIP), were microstructural and mechanically characterised from 77 to 1473 K in air and under high vacuum conditions. Hardness, elastic modulus, flexural strength and fracture toughness for all of the alloys were measured in addition to other physical and mechanical properties. Finally, the fracture surfaces after the TPB tests were analysed to correlate the micromechanisms of failure with the macroscopic behaviour. The results reveal brittle mechanical behaviour in almost the entire temperature range for the alloys and micromechanisms of failure with no improvement in the ductile-brittle transition temperature (DBTT). To continue the search of a tungsten material with lowered DBTT, a preliminary study of pure tunsgten and 0.005 wt.% potassium (K)-doped tungsten foils was also performed. These foils were industrially produced by sintering and hot and cold rolling. After that, they were annealed from 1073 to 2673 K to analyse the evolution of the microstructural and mechanical properties with increasing annealing temperature. The results revealed the stabilisation of the tungsten grains with increasing annealing temperature in the potassium-doped tungsten foil. However, additional studies need to be performed to gain a better understanding of the microstructure and mechanical properties of these materials such as fracture toughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with We5wt.%Ta and We15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300e1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Issued Sept. 1977.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report consists of the analytical procedures modified or developed at Pratt & Whitney Aircraft, CANEL, for the determination of alloying constituents and impurities in columbium and its alloys. Included are spectrophotometric methods for chromium, columbium, iron, molybdenum, tungsten, nickel, nitrogen and titanium; volumetric methods for chromium, vanadium and zirconium; emission and X-ray spectrographic methods for various alloying elements; a spectrographic method for zirconium and trace impurities and miscellaneous methods for aluminum, carbon, oxygen and hydrogen.