992 resultados para Tropical savanna
Resumo:
O Cerrado ainda recebe pouca atenção no que diz respeito à ornitologia embora seja a única savana tropical do mundo considerada um hotspot de biodiversidade. O cerradão é uma das fisionomias menos conhecidas e mais desmatadas do bioma e poucos levantamentos avifaunísticos foram realizados nessas florestas. Para revisar os estudos sobre aves de cerradão e complementar os poucos inventários já existentes realizados nesse tipo florestal no estado de São Paulo, foi realizado um levantamento bibliográfico dos estudos publicados sobre aves de cerradão. Adicionalmente foi conduzido um levantamento das aves de um fragmento de cerradão de 314 ha localizado na região central do estado de São Paulo, Brasil, entre setembro de 2005 e dezembro de 2006 com a utilização de transecções lineares com raio ilimitado de detecção. de 95 estudos envolvendo aves de cerradão, apenas 17 (18%) discriminaram espécies registradas dentro desta fisionomia daquelas que obtiveram registros em outros ambientes de Cerrado. Exceto por um estudo, nenhuma outra investigação encontrou mais de 64 espécies de aves neste ambiente, resultado compartilhado com diversas regiões do Brasil e também da Bolívia. Diferenças no número de espécies entre cerradões não puderam ser atribuídas à degradação dos ambientes estudados ou tamanho de fragmento. Considerando os registros de cerradões no Brasil e na Bolívia, a compilação de dados acumulou 250 espécies distribuídas em 36 famílias e 15 ordens. Durante nossos trabalhos de campo em localidade do interior paulista foram registradas 48 espécies distribuídas em 20 famílias, incluindo o fruxu-do-cerradão (Neopelma pallescens), ameaçada em São Paulo, e o soldadinho (Antilophia galeata), quase ameaçada no estado e endêmica do Cerrado. Dentre as espécies mais abundantes no fragmento, nenhuma delas é ameaçada ou endêmica do bioma.
Resumo:
Questions: Grasslands are usually neglected as potential carbon stocks, partially due to the lack of studies on biomass and carbon dynamics in tropical grasslands. What is the importance of Brazilian tropical wet grasslands as carbon sinks? Does fire frequency and season affect biomass and carbon allocation in Brazilian wet grasslands? Location: Wet grasslands, tropical savanna, Jalapão, Tocantins, northern Brazil. Methods: We determined biomass above- and below-ground, estimated carbon stocks in biennially burned plots (B2) and plots excluded from fire for 4 yr (B4). Moreover, we determined biomass in both rainy and dry seasons. Samples were 0.25 m × 0.25 m × 0.2 m (eight samples per treatment, applying a nested design, total of 48 samples). The biomass was classified in above-ground graminoids, forbs and dead matter, and below-ground roots and other below-ground organs. We used ANOVA to compare variables between treatments and seasons. Results: More than 40% of the total biomass and carbon stocks were located below-ground, mostly in roots. A high proportion of dead biomass (B4) was found in the above-ground material, probably due to low decomposition rates and consequent accumulation over the years. Although these grasslands do not experience water stress, we found significant evidence of resource re-allocation from below-ground organs to the above-ground biomass in the rainy season. Conclusions: We found more dead biomass in the rainy season, probably due to low decomposition rates, which can increase fire risk in these grasslands during the following dry season. These tropical wet grasslands stored high amounts of carbon (621 to 716 g C.m-2), mostly in the roots. Thus, policymakers should consider tropical grasslands as potential carbon stocks, since they are one of the most threatened and unprotected ecosystems in Brazil. © 2012 International Association for Vegetation Science.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
A ausência de um consenso sobre as prioridades de conservação de mamíferos e a escassez de inventários completos dificultam ações eficazes de conservação dessas espécies na Amazônia. Dentro desse contexto, a região do rio Marmelos no município ao sul do Amazonas, ainda pouco conhecida e ameaçada por exploração madereira e expansão agropecuária, é prioritária para a realização de inventários. Dessa forma foi realizado no período de 26 de julho a 10 de setembro de 2004 um estudo objetivando identificar a riqueza e uso de habitats por mamíferos terrestres de médio e grande porte na região do alto rio Marmelos, ao sul do estado do Amazonas. Para tanto, foram empregados métodos indiretos (registro de pegadas) e diretos (avistamento) em um esforço amostrai que totalizou 228 km percorridos em transecções lineares. Nas quatro formações vegetais amostradas (mata aberta, mata densa, savana parque e campo cerrado) foi registrado um total de 50 espécies, sendo 36 através de observações diretas ou de pegadas. Destas espécies, 12 são listadas pela IUCN. O método de pegadas registrou o maior número de espécies e de forma mais rápida. A maior fração (45%) das espécies registradas apresentou um comportamento generalista, utilizando tanto os habitats florestais como as formações abertas, corroborando a tendência descrita na literatura para áreas com formações vegetais similares. A mata aberta foi o ambiente que abrigou o maior número de espécies, além de ser o habitat mais utilizado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In tropical regions there is rapid decomposition of plant material deposited on the soil, and the ability to recycle nutrients through this decomposition is one of the most important aspects of cover crops. The aim of this study was to evaluate the yield and nutrient release from forage crops intercropped with maize for silage, and soybean in succession. The study was conducted in the experimental area of Universidade Estadual Paulista, Ilha Solteira campus, Brazil. The experiment consisted of maize for silage intercropped with four forage species (Urochloa brizantha cv. Marandu, Urochloa ruziziensis, Panicum maximum cv. Tanzania, and Panicum maximum cv. Aries) sown in three modalities: in the maize row, together with fertilizer; broadcast at maize sowing; and broadcast in the V4 stage of maize, in a randomized block design in a 4 x 3 factorial arrangement with four replications. The evaluation of nutrient release was performed during the soybean cropping that followed the intercropping by the litter bag method at 30, 60, 90, and 120 days after sowing of soybean. Panicum maximum cv. Tanzania showed higher dry matter yield when sown by broadcasting at maize sowing. Sowing of forages in the maize row, and through broadcasting at maize sowing led to greater dry matter yield for straw formation. Intercropping of maize with forages in the autumn is an alternative for increasing the amount of straw and cycling of macronutrients in a no-till system. Potassium was the nutrient with the greatest accumulation in the forage straws (up to 150 kg ha(-1)), with 100 % release at 90 days after sowing soybean. The forage straws are thus an excellent alternative for cycling of this nutrient. Panicum maximum cv. Tanzania sown by broadcasting at the time of maize sowing showed greater phosphorus cycling (13 kg ha(-1)). Panicum maximum cv. Tanzania broadcast in the V4 stage of maize is the option with least potential for straw production and nutrient cycling, while the other options (forages and sowing modalities) have higher potential for use, at the criteria of machine availability for setting up intercropping with corn.
Resumo:
To achieve high wheat yield, correct management of N fertilization and the use of high yield potential cultivars are necessary. The aim of this study was to evaluate the effects of different application rates and sources of N, applied totally at sowing or in topdressing, on grain yield and yield components of two irrigated wheat cultivars under a no-till system, grown in a Cerrado (Brazilian tropical savanna) region of low altitude. A randomized block design was used in a 5 x 3 x 2 x 2 factorial arrangement with three replications, combining five levels of N (0, 50, 100, 150, and 200 kg ha(-1)), three sources of N (Entec (R), ammonium sulfate, and urea), and two application times (at sowing, near the rows, or in topdressing) in two wheat cultivars (IAC 370 and Embrapa 21). The wheat cultivars had similar grain yields. There was no difference among the sources of N for grain yield and yield components. The N applied totally at sowing did not differ from the traditional application at sowing and in topdressing for production of irrigated wheat in no-tillage. The increase in application rates of N increased the leaf N contents and chlorophyll, plant height, and the number of ears per m(2). Grain yield of the wheat cultivars IAC 370 and Embrapa 21 increased up to the application rates of 134 and 128 kg ha(-1) of N, respectively, regardless of application time and source of N. The positive correlation between chlorophyll leaf content and grain yield in accordance with N fertilization levels indicates that N fertilization in topdressing can be recommended based on SPAD readings of leaf chlorophyll performed at 38 days after wheat plant emergence.
Resumo:
Oeceoclades aculate (Lindl.) Lindl., an invasive orchid, was analyzed as to its reproductive phenology and spatial distribution, correlation between abundance of mature and immature individuals, and verifying these with microclimate patterns in the Cerrado (savanna-like vegetation) of Mogi Guacu, Sao Paulo State, Brazil. For the reproductive phenology 100 plants were followed and the distribution pattern was identified by the Morisita Index (MI) and the Variance Ratio/Average (R) in 20 plots of 20x10m, reduced to 10x10m afterwards. The phenology presented seasonality, with flowering from November to February, fructification from February to June, and dehiscence from June to July. Mature and immature individuals aggregated and correlated to each other, indicating dependence between the ontogenetic stages. The luminosity was the preponderant microclimatic factor in the allocation of plants. Seasonal climatic changes and intensity of anthropogenic disturbances seem to be more important for the establishment of the species than microclimate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
The moist tropical forests of the Western Ghats of India are pockmarked with savanna-grasslands created and managed by local agricultural communities. A sample of such savanna-grasslands with differing growing conditions was studied in terms of peak above-ground biomass, monthly growth, and cumulative production under different clipping treatments. The herblayer was found to be dominated by perennial C4 grasses, with Eulalia trispicata, Arundinella metzii and Themeda triandra being common to all sites. Peak biomass ranged between 3.3-5.9 t/ha at sites most favourable for grass production. Across these sites, peak biomass was found to be inversely related to the number of rainy days during the growing season, suggesting that growth may be light-limited. This hypothesis is supported by the observation that growth is most rapid immediately after the easing of the monsoon. Single clips early in the growing season had no negative or a slightly positive effect on production, but mid-season single clips or continuous frequent clipping reduced production by as much as 40%. The results suggest that, while indiscriminate grazing may certainly be deleterious, it is possible to obtain sustained high yields from forest lands managed for grass production without totally excluding grazing.
Resumo:
Tropical dry forests and savannas constitute more than half of all tropical forests and grasslands, but little is known about forest fire regimes within these two extensive types of ecosystems. Forest fire regimes in a predominantly dry forest in India, the Nilgiri landscape, and a predominantly savanna ecosystem in the Sathyamangalam landscape, were examined. Remote sensing data were applied to delineate burned areas, determine fire size characteristics, and to estimate fire-rotation intervals. Belt transects (0.5 ha) were used to estimate forest structure, diversity, and fuel loads. Mean area burned, mean number of fires, and mean fire size per year were substantially higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Mean fire-rotational interval was 7.1 yr in the Nilgiri landscape and 44.1 yr in the Sathyamangalam landscape. Tree (>= 10 cm diameter at breast height) species diversity, tree density, and basal area were significantly higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Total fuel loads were significantly higher in tropical dry and moist deciduous forests in the Nilgiri landscape, but total fuel loads were higher in the tropical dry thorn forests of the Sathyamangalam landscape. Thus, the two landscapes revealed contrasting fire regimes and forest characteristics, with more and four-fold larger fires in the Nilgiri landscape. The dry forests and savannas could be maintained by a combination of factors, such as fire, grazing pressures, and herbivore populations. Understanding the factors maintaining these two ecosystems will be critical for their conservation.