70 resultados para Triterpenoids.
Resumo:
This paper reports the separation and identification of indole alkaloids, steroids and triterpenoids from the ethanolic extracts of Tabernaemontana hilariana (Apocynaceae). The alkaloidal fractions from the ethanolic extracts obtained (root barks, green fruits, ripe fruits and seeds) were fractionated and analysed by thin-layer chromatography, capillary gas chromatography-flame ionization detection (cGC-FID) as well as by high-resolution gas chromatography-mass spectrometry (HRGC-MS). 3-Hydroxycoronaridine, ibogamine, coronaridine pseudoindoxyl, coronaridine, catharanthine, voacangine hydroxyindolenine, voacangine pseudoindoxyl, tabernanthine, tetraphyllicine, 3-hydroxyvoacangine, voacangine, isovoacangine and 3-oxocoronaridine were identified. The insoluble fraction of ethanolic extracts obtained from the root barks and green fruits were analysed and ten aliphatic constituents were also identified by cGC-FID and HRGC-MS. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Maytenus aquifolium (Celastraceae) and Salacia campestris (Hippocrateaceae) species accumulate friedelane and quinonemethide triterpenoids in their leaves and root bark, respectively. Enzymatic extracts obtained from leaves displayed cyclase activity with conversion of the substrate oxidosqualene to the triterpenes, 3 beta -friedelanol and friedelin. In addition, administration of (+/-)5-H-3 mevalonolactone in leaves of M. aquifolium seedlings produced radio labelled friedelin in the leaves, twigs and stems, while the root bark accumulated labelled maytenin and pristimerin. These experiments indicated that the triterpenes once biosynthesized in the leaves are translocated to the root bark and further transformed to the antitumoral quinonemethide triterpenoids. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Trata da investigação química das folhas e caule da espécie Ouratea castaneifolia (DC.) Engl., sobre a qual não há registros de estudos químicos ou farmacológicos anteriores. O estudo fitoquímico clássico dos extratos orgânicos do caule e das folhas de O. castaneifolia foi aliado à técnica da cromatografia líquida de alta eficiência (CLAE) e resultou na identificação de dezessete metabólitos: sete triperpenos (friedelina, 3β-friedelinol, α-amirina, β-amirina, lupeol, taraxerol e germanicol), quatro esteróides (sitosterol, estigmasterol e os glucosídeos sitosteril 3-O-β-D-glicopiranosídeo e estigmasteril 3-O-β-D-glicopiranosídeo), uma isoflavona (5,7,4´-trimetoxiisoflavona), uma flavona (5,4´-diidroxi-7,3´,5´-trimetoxiflavona), quatro biflavonas (amentoflavona, 7,7”-O-dimetil-amentoflavona, heveaflavona e tetrametilamentoflavona). A identificação das substâncias foi feita com base na análise de espectros de RMN de 1H, 13C e técnicas bidimensionais. As classes dos metabólitos identificados estão de acordo com aquelas citadas em estudos químicos do gênero Ouratea.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The reactivity of higher plant derived 3-oxy-triterpenoids to sunlight was investigated using a series of pure reference standards both under simulated and real solar exposure. The majority of the exposed compounds showed reactivity to light, particularly to simulated sunlight and among others generated seco-derivatives. While photochemical processes have been suggested for the formation of such compounds, their abundances in some sediments have often been assumed to be the result of diagenetic reworking of parent triterpenoids. Analyses of mangrove leaf waxes, an important known source of taraxerol in coastal ecosystems, showed the presence of the 3,4-seco-derivative dihydrolacunosic acid, which could represent an important biotic source for des-A-triterpenoid precursors to such sediments, and is unrelated to aquatic organic matter diagenesis.
Resumo:
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid, and boswellic acids, by modification of A-ring with a cyano- and enone-functionality, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bioassays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyano-enones of boswellic acid and glycyrrhetinic acid.
Resumo:
Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 mu M. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 mu M and 1 mu M concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 mu M. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.
Resumo:
Phytochemical investigation of Kadsura angustifolia led to the isolation and identification of 26 lignans and two triterpenoids, including I I new lignans named kadangustins A-K (1-11). The structures and stereochemistry of 1-11 were elucidated by. analys
Resumo:
本论文对四川蜡瓣花 (Corylopsis willmottiae Rehd. et Wils.)、密花樫木[Dysoxylum densiflorum (Blume) Miq.]、四川溲疏 (Deutzia setchuenensis Franch)及云南豆腐柴 (Premna yunnanensis W. W. Smith)的化学成分进行了研究。通过色谱分离得到44个化合物。主要基于波谱数据鉴定了它们的结构,其中1个为新化合物。 1.从四川蜡瓣花全株的95%乙醇提取物中共分离鉴定了13个化合物,它们是:1-O-(3-O-甲基没食子酸)-岩白菜素(1)、11-O-没食子酰基岩白菜素(2)、 11-O-紫丁香基岩白菜素(3) 、岩白菜素(4)、4-O-没食子酰基岩白菜素(5) 、4,11-O-二没食子酰基岩白菜素 (6)[14]、β-谷甾醇 (7)、acetyl aleuritolic acid (8)、(-)-表没食子儿茶素没食子酸酯(9)、对羟基苯甲酮 (10)、 11-香豆酸酰岩白菜素 (11)[19]、丁香酸 (12)和没食子酸 (13)。其中1为新化合物。 2.从密花樫木根的95%乙醇提取物中共分离纯化了13个化合物,它们是:β-白檀酮(14)、richenone (15)、β-谷甾醇 (7)、cabraleadiol (16)、β-香树脂醇 (17)、龙脑香醇酮 (18)、cabraleadiol monoacetate (19)、cabraleone (20)、3β-hydroxy-5 -pregnen-20-one (21)、3β-hydroxy-5α-pregnan-20-one (22)、cabraleahydroxylactone (23)、川楝子甾醇B (24)、表儿茶素 (25)。 3.从四川溲疏全株95%乙醇提取物中共分离11个化合物,鉴定了其中的9个化合物。它们是:β-谷甾醇 (7)、白桦酯醇(26)、齐墩果酸(27)、hydrangetin (28)、肉桂酸 (29),齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸苷(30)、β-胡萝卜苷 (31)、齐墩果酸-3-O-(β-D-吡喃葡萄糖醛酸-6-正丁酯)(32)、齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸-28-O-β-D-吡喃葡萄糖苷 (33)。 4.从云南豆腐柴95%乙醇提取物中分离得到12个化合物,分别为白桦脂醇 (25)、7-羟基黄烷酮 (34)、松属素 (35)、2’,4’-羟基查儿酮 (36)、高良姜素-3-甲醚 (37) 、高良姜素-3,7-二甲醚 (38)、异甘草素-4-甲醚 (39)、豆蔻明 (40)、乔松酮 (41)、异甘草素 (42)、arjunolic acid (43)、槲皮素3-O-β-D-木糖苷(44)。 5.综述了1976年以来樫木属植物化学成分和活性研究的概况。 Phytochemical investigation on Corylopsis willmottiae, Dysoxylum densiflorum, Deutzia setchuenensis, and Premna yunnanensis, led to the isolation of 44 compounds, 1 of which was new one. 1. One new compound was isolated from 95% ehanolic extrat of the whole plants of C. willmottiae, identified as 11-O-(3-O-methylgalloyl)-bergenin (1). The twelve known compounds isolated were 11-O-galloylbergenin (2), 11-O-syringylbergenin (3), bergenin (4), 4-O-galloylbergenin (5), 4,11-di-O-galloylbergenin (6), β-sitosterol (7), acetyl aleuritolic acid (8), (-)-epigallocatechin 3-O-gallate (9), 1-(4-hydroxyphenyl) ethanone (10), 11-O-coumaroylbergenin (11), syringic acid (12), gallic acid (13). 2. Thirteen compounds were isolated from 95% ethanol extract from the roots of D. densiflorum and identified as β-amyrenone (14), richenone (15), β-sitosterol (7), cabraleadiol (16), β-amyrin (17), hydroxydammarenone-Ⅱ (18), cabraleadiol monoacetate (19), cabraleone (20), 3β-hydroxy-5-pregnen-20-one (21), 3β-hydroxy-5α-pregnan-20-one (22), cabraleahydroxylactone (23), toosendansterol B (24) and (-)-epicatechin (25). 3. Eleven compounds were isolated from ethanol extract of D. Setchuenensis. Nine were identified as β-sitosterol (7), betulin (26), oleanolic acid (27), hydrangetin (28), cinnamic acid (29), oleanolic acid 3-O-β-D-glucuronopyranoside (30), β-daucosterol (31), oleanolic acid 3-O-β-D-glucuronopyranoside-6-O-butyl ester)(32), oleanolic acid 3-O-β-D-glucuronopyranosyl-28-3-O-β-D-glucopyranoside (33). 4. Twelve compounds were isolated from ethanol extract of P. yunnanensis and identified as betulin (26), 7-hydroxyflavanone (34), pinocembrin (35), 2’,4’-dihydroxychalcone (36), galangin 3-methyl ether (37), galangin 3,7-dimethyl ether (38), isoliquiritigenin 4-methyl ether (39), cardamonin (40), pinostrobin (41), isoliquiritigenin (42), arjunolic acid (43), quercetin 3-O-β-D-lyxosopyranoside (44). 5. Chemical constituents and biological activities of the genus Dysoxylum (Meliaceae) were reviewed during 1976-2009.
Resumo:
本论文由三部分共四章组成。第一部分介绍丁香化学成分的研究成果,第二部分为升麻的化学成分研究,第三部分综述了环菠萝蜜烷三萜结构和活性关系的研究现状。 第一部分包括第一和第二章。第一章介绍了丁香(Eugenia caryophyllataThunb.)花蕾的化学成分和结构鉴定。采用正、反相硅胶柱层析等各种分离方法,从其乙醇提取物的乙酸乙酯萃取物和正丁醇萃取物中共分离出34 个化合物,它们的结构类型分属黄酮、三萜、鞣质等。其中1 个为新的酚苷类化合物,其结构经波谱分析鉴定为2-O-(6'-O-没食子酰基)-b-D-葡萄糖基苯甲酸甲酯(24),另外还有12 个化合物为首次从该植物中分离得到。第二章介绍了丁香挥发油的气相色谱- 质谱联用( GC-MS )和正丁醇萃取物的高效液相色谱- 质谱联用(HPLC-MS/MS)分析,尝试简单快速地检测丁香挥发油及极性部分的主要化学成分的方法。 第二部分为第三章。本章介绍了传统中药升麻(Cimicifuga foetida L.)根部乙醇提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化方法和MS、NMR 等波谱解析技术,共分离鉴定了20 个化合物,主要为环菠萝蜜烷三萜,其中5 个新三萜化合物分别鉴定为cimicidol-3-one(38)、3'-O-乙酰基升麻苷H-1(41)、2'-O-乙酰基升麻苷H-1(42)、(3b,12b,16b)-12-乙酰氧-16,23-环氧-9,19-环羊毛甾烷-22-烯-24-酮3-O-b-D-吡喃木糖苷(44)和升麻碱(54)。新化合物54 为结构新颖的环菠萝蜜烷三萜皂苷生物碱,这是首个发现的具有环菠萝蜜烷三萜骨架的生物碱,也是从升麻属植物中发现的第一个三萜生物碱,它的结构通过多种波谱解析,特别是2D-NMR 的充分应用,并结合化学降解和反应得到证实。此外,还介绍了分离得到的一种具有明显抑制破骨细胞活性的化合物(QS29)的体外活性研究。 第三部分即第四章,综述了升麻属植物中环菠萝蜜烷三萜与其生物活性的构效关系研究现状。 This dissertation consists of three parts. In the first and the second parts, thechemical constituents from the flower buds of Eugenia caryophyllata and therhizomes of Cimicifuga foetida were reported. The third part is a review on astructure-activity relationship of the cycloartane triterpenoid from Cimicifuga species. The first part is composed of two chapters. The chapter 1 is about the isolationand identification of the chemical constituents from the flower buds of E.caryophyllata. A new phenolic glucoside gallate, methyl 2-O-(6’-O-galloyl)-b-D-glucopyranosylbenzoate (24), together with thirty-three known compounds has beenisolated from the ethanol extract of the flower buds of E. caryophyllata throughrepeated column chromatography on normal and reversed phase silica gel. Thestructure of the new compound was elucidated on the basis of spectral and chemicalevidence. Those kno wn compounds were belonged to flavone, triterpenoid, tannin andsome simple compounds. Among them, 12 compounds were isolated from the titleplant for the first time. The second chapter describes the capillary GC-MS analysis ofthe volatile components and the HPLC-MS/MS analysis of the polar constituents fromthe flower buds of E. caryophyllata, in order to detect the main constituents in thecrude extract rapidly and precisely. The third chapter is about the chemical constituents of the rhizomes C. foetida, atraditional Chinese medicine which was used as anti-inflammatory, analgesic andantipyretic agents. Our investigation of the bioactivities constituents of the rhizomesof C. foetida led to the isolation of five new cycloartane triterpenoids, which werecharacterized as cimicidol-3-one (38), 3'-O-acetyl cimicifugoside H-1 (41),2'-O-acetyl cimicifugoside H-1 (42), (3b,12b,16b)-12-acetoxy-16,23-epoxy-9,19-cyclolanost-22-ene-24-one 3-O-b-D-xylopyranoside (44) and cimicifugadine (54),along with fifteen known compounds through repeated column chromatography onnormal and reversed phase silica gel. Among them, 54 is a novel cycloartanealkaloid and first discovered as a new type alkaoid from nature. The structures ofthese compounds were elucidated on the basis of spectral and chemical evidence, andcimicidol-3-one was confirmed by X-ray crystallography analysis. Moreover, onecompound exhibited strong anti-osteoporosis activity in vitro experiment. The fourth part is a review on a structure-activity relationship analysis of thecycloartane triterpenoid from Cimicifuga species.
Resumo:
本学位论文由4章组成。第一章是论文的主体,报道了中药射干的化学成分研究。第二章是中药射干代用品川射干的化学成分研究,并附带报道了西番莲化学成分的研究结果。第三章是射干、川射干及西番莲提取物化学成分串联质谱分析的报道。第四章为综述,概述了射干及鸢尾属植物的化学成分和药理研究进展。 在第一和二章中分别报道了射干(Belamcanda chinensis (L.) DC.)、川射干 (Iris tectorum Maxim.)及西番莲(Passiflora incarnate L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析、凝胶柱层析、薄层制备及HPLC等各种分离方法,从三种药用植物中共分离出68个不同的化合物,其中61个的结构得 得以鉴定,另外4个化合物的结构正在鉴定中,3个由于量少且有点杂质未作进一步的鉴定。 中药射干(Rhizoma Belamcandae)为射干植物的干燥根茎,从中共分离出53个化合物,通过红外、质谱及核磁共振等波谱方法鉴定了包括12个新化合物在内的48个,结构类型分别属于iridal型三萜及其新颖的二聚体、异黄酮、黄酮及黄酮醇、香豆素、甾体、芳香酸和脂肪酸及其甘油酯等。新化合物中有两个异黄酮类化合物,其结构分别鉴定为5,7,8,4′-四羟基-6-甲氧基异黄酮和5,6-二羟基-4′-甲氧基异黄酮-7-O-β-D-吡喃葡萄糖苷;八个新的iridal型三萜化合物分别鉴定为鸢尾烯(L)、16-甲氧基鸢尾烯、16-去羟基鸢尾烯、2-(E)-16-去羟基鸢尾烯、16-去羟基鸢尾烯B、3-乙酰基-16-去羟基鸢尾烯、iristectoroneL和iristectoroneM;两个结构骨架新颖的双三萜,分别命名为射干素A和射干素B,其分离纯化的困难以及结构的新颖和复杂突显出该论文的科学意义。除这些新化合物外,还有9个已知化合物为首次从中药射干中分离得到。此外,从中药射干的代用品川射干中分离得到7个已知化合物,主要是黄酮类成分及iridal型三萜化合物,其中1个三萜化合物为从射干中分离鉴定的新成分。另外还从西番莲中分离出8个化合物,鉴定了其中的6个,主要为黄酮碳苷。 第三章是关于射干、川射干及西番莲提取物化学成分的ESI-MS-MS分析,在初步探讨了从这些植物中分离鉴定出的一些异黄酮及黄酮碳苷的质谱裂解规律基础上,通过质谱和串联质谱分析,定性和半定量地检测了射干和川射干中主要的异黄酮成分以及西番莲中的黄酮碳苷成分,为这些药材品质的快速鉴定提供了一种简便方法。 第四章概述了射干及鸢尾属药用植物的化学和药理研究进展,特别是对其中异黄酮及三萜类成分的研究进展进行了深入系统的综述。 This dissertation is composed by four chapters. The first and second chapter reports the phytochemical investigation of three medicine plants, Belamcanda chinensis (L.)DC., Iris tectorum Maxim. and Passiflora incarnate L. Sixty eight different compounds were isolated and sixty one of them were identified. The third chapter described rapid ESI-MS-MS analysis of B. chinensis, I. tectorum, and P. incarnate. The forth part is a review about the progress of studies on the chemical constituents from Belamcanda chinensis and Iris species. Fifty-three compounds were isolated from Rhizoma Belamcandae, the rhizomes of B. chinensis by the methods of column chromatography (normal and reversed phase silica gel, Sephadex LH-20), preparative TLC and HPLC. On the basis of spectroscopic methods including IR, ESI-MS, 1-D and 2-D NMR, forty eight of them were identified as seventeen flavonoids, seventeen tritepenoids, one cumarin, five steroids and some benzene derivative etc. Among them, the structures of twelve new compounds were elucidated as 6-methoxy-5,7,8,4′-tetrahydryoxyisoflavoe, 4′-methoxy-5,6-dihydroxyisoflavone-7-O-β-D-glucopyranoside, iristectorene L, 16-methoxyisoiridogermanal, 16-dehydroxyisoiridogermanal, 2-(E)-16-dehydroxy isoiridogermanal, 16-dehydroxyiristectorene B, 3-acetyl-16-dehydroxyisoiridoger- manal, iristectorone L, iristectorone M, belamcandene A and belamcandene B. Last two new compounds are dimer of triterpenoids with a novel carbon skeleton. Beside the new compounds, nine known ones were isolated from this plant for the first time. Isolation of I. tectorum yielded seven compounds. On the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples, three of them were determined as isoflavone, two of them were triterpenoids, and other two were β-sitosterol and apocynin. All of them are known compounds except one of iridal type triterpenoid, 16-dehydroxyiristectorene B, which also obtained from B. chinensis as a new compound. Isolation of P. incarnate yielded eight compounds. Six of them were determined on the basis of spectroscopic methods including ESI-MS, NMR and the comparison with authentic samples. Four of them are flavone-C-gluconside, and two are steroids. The third chapter describes the tandem mass spectrometry (ESI-MS-MS) analysis of the isoflavonoids from B. chinensis and I. tectorum, as well as C-glycosyl-flavonoide from P. incarnate, in order to explore the rapid methodology of validating the quality of the herbs. In addition, the fractionation rules of some iosflavonoids and C-glycosyl-flavonoids were discussed. The fourth chapter summarizes the research development on chemistry and pharmacology of medicine plants of B.chinensis and Iris species.