712 resultados para Transformada KLT
Resumo:
Neste trabalho, desenvolvemos uma metodologia semi-analítica para solução de problemas de condução de calor bidimensional, não-estacionária em meios multicompostos. Esta metodologia combina os métodos nodal, com parâmetros concentrados, e a técnica da transformada de Laplace. Inicialmente, aplicamos o método nodal. Nele, a equação diferencial parcial que descreve o problema é integrada, transversalmente, em relação a uma das variáveis espaciais. Em seguida, é utilizado o método de parâmetros concentrados, onde a distribuição de temperatura nos contornos superior e inferior é substituída pelo seu valor médio. Os problemas diferenciais unidimensionais resultantes são então resolvidos com o uso da técnica da transformada de Laplace, cuja inversão é avaliada numericamente. O método proposto é usado na solução do problema de condução de calor, em paredes de edificações. A implementação computacional é feita, utilizando-se a linguagem FORTRAN e os resultados numéricos obtidos são comparados com os disponíveis na literatura.
Resumo:
Neste trabalho se propõe um avanço para a Técnica Transformada Integral Generalizada, GITT. O problema transformado, usualmente resolvido por subrotinas numéricas, é aqui abordado analiticamente fazendo-se uso da Transformada de Laplace. Para exemplificar o uso associado destas duas transformadas integrais, resolvem-se dois problemas. Um de concentração de poluentes na atmosfera e outro de convecção forçada com escoamento laminar, entre placas planas paralelas, com desenvolvimento simultâneo dos perfis térmico e hidrodinâmico. O primeiro é difusivo, transiente e com coeficientes variáveis. Sua solução é obtida de forma totalmente analítica. Além de mostrar o uso da técnica, este exemplo apesar de ter coeficientes variáveis, é resolvido com o auxílio de um problema de autovalores associado com coeficientes constantes. No segundo, obtém-se a solução da Equação da Energia analiticamente. Já a Equação da Conservação do Momentum é linearizada e resolvida de forma iterativa. A solução de cada iteração é obtida analiticamente.
Resumo:
o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos.
Resumo:
Este trabalho apresenta a aplicação da transformada de ondaletas, como ferramenta de análise para o estudo de escoamentos turbulentos transientes e não homogêneos que podem ocorrer nas situações reais de engenharia, onde fenômenos transientes e não contínuos estão normalmente presentes. O estudo experimental da turbulência em túnel de vento habitualmente pressupõe que o escoamento seja estacionário; assim, fenômenos transientes são estudados como uma sucessão de situações estacionárias intermediárias. Isto é necessário porque a ferramenta clássica para o estudo experimental da turbulência, a análise de Fourier, só se aplica a fenômenos estacionários, pois seus resultados se referem a comportamentos de conjunto e as singularidades do sinal não aparecem na análise. Para estes escoamentos onde a transformada de Fourier não se aplica ou não apresenta resultados satisfatórios, a transformada de ondaletas, entre outras possibilidades, é a ferramenta matemática que vem sendo mais freqüentemente utilizada a partir da última década. São apresentados os fundamentos matemáticos, bem como uma breve história da transformada de ondaletas, da transformada de Fourier e da estatística aplicada á turbulência. Para estudar a transformada de ondaletas e buscar a melhor forma de aplicá-la ao estudo da turbulência, foram analisados três escoamentos distintos: na esteira de um cilindro, em turbulência homogênea e em um banco de tubos de configuração quadrangular. Os resultados experimentais foram obtidos por anemometria de fio quente. As medições foram feitas em um túnel de vento, partindo do repouso até atingir o regime permanente. Os dados experimentais obtidos foram analisados utilizando técnicas de ondaletas, usando várias ondaletas e várias transformadas de ondaletas diferentes. Os resultados são comparados entre si e com a transformada de Fourier. Também foram realizados ensaios em regime permanente para várias velocidades do escoamento entre o repouso e a velocidade nominal do ventilador, com o auxílio de um inversor de freqüência. Os resultados para a variação do número de Strouhal com a velocidade, obtidos da análise destes dados pela transformada de Fourier mostraram boa concordância com os obtidos da análise de ondaletas das aquisições transientes. Os resultados mostram que a transformada de ondaletas é uma ferramenta valiosa para a análise dos dados experimentais obtidos nos problemas investigados, qualificando e complementando a análise de Fourier onde esta se aplica e substituindo-a quando o fenômeno for não estacionário.
Resumo:
Neste trabalho, apresentamos uma solução analítica para as equações difusivas unidimensionais da Teoria Geral de Perturbação em uma placa heterogênea, isto é, apresentamos as soluções analíticas para os problemas de autovalor para o fluxo de nêutrons e para o fluxo adjunto de nêutrons, para o cálculo do fator de multiplicação efetivo (keff), para o problema de fonte fixa e para o problema de função auxiliar. Resolvemos todos os problemas mencionados aplicando a Transformada de Laplace em uma placa heterogênea considerando um modelo de dois grupos de energia e realizamos a inversão de Laplace do fluxo transformado analiticamente através da técnica da expansão de Heaviside. Conhecendo o fluxo de nêutrons, exceto pelas constantes de integração, aplicamos as condições de contorno e de interface e resolvemos as equações algébricas homogêneas para o fator de multiplicação efetivo pelo método da bissecção. Obtemos o fluxo de nêutrons através da avaliação das constantes de integração para uma potência prescrita. Exemplificamos a metodologia proposta para uma placa com duas regiões e comparamos os resultados obtidos com os existentes na literatura.
Resumo:
Neste trabalho é obtida uma solução híbrida para a equação de Fokker-Planck dependente da energia, muito utilizada em problemas de implantação iônica. A idéia consiste na aplicação da transformada de Laplace na variável de energia e aplicação de um esquema de diferenças finitas nas variáveis espacial e angular desta equação. Tal procedimento gera um problema matricial simbólico para a energia transformada. Para resolver este sistema, procede-se a inversão de Laplace da matriz (sI+A), onde s é um parâmetro complexo, I a matriz identidade e A uma matriz quadrada gerada pela discretização das variáveis espacial e angular. A matriz A não é diagonalizável, desta forma, contorna-se este problema decompondo esta matriz na soma de outras duas, onde uma delas é diagonalizável. É gerado então um método iterativo de inversão, semelhante ao método da fonte fixa associado ao método de diagonalização, do qual o resultado fornecido são os valores para o fluxo de partículas do sistema. A partir disto pode-se determinar a energia depositada no sistema eletrônico e nuclear do alvo. Para validar os resultados obtidos faz-se a simulação de implantação de íons de B em Si numa faixa energética de 1keV a 50MeV, comparam-se os resultados com simulação gerada numericamente pelo software SRIM2003.
Resumo:
O processamento de imagens tem sido amplamente utilizado para duas tarefas. Uma delas é o realce de imagens para a posterior visualização e a outra tarefa é a extração de informações para análise de imagens. Este trabalho apresenta um estudo sobre duas teorias multi-escalas chamadas de espaço de escala e transformada wavelet, que são utilizadas para a extração de informações de imagens. Um dos aspectos do espaço de escalas que tem sido amplamente discutido por diversos autores é a sua base (originalmente a gaussiana). Tem se buscado saber se a base gaussiana é a melhor, ou para quais casos ela é a melhor. Além disto, os autores têm procurado desenvolver novas bases, com características diferentes das pertencentes à gaussiana. De posse destas novas bases, pode-se compará-las com a base gaussiana e verificar onde cada base apresenta melhor desempenho. Neste trabalho, foi usada (i) a teoria do espaço de escalas, (ii) a teoria da transformada wavelet e (iii) as relações entre elas, a fim de gerar um método para criar novas bases para o espaço de escalas a partir de funções wavelets. O espaço de escala é um caso particular da transformada wavelet quando se usam as derivadas da gaussiana para gerar os operadores do espaço de escala. É com base nesta característica que se propôs o novo método apresentado. Além disto, o método proposto usa a resposta em freqüência das funções analisadas. As funções bases do espaço de escala possuem resposta em freqüência do tipo passa baixas. As funções wavelets, por sua vez, possuem resposta do tipo passa faixas Para obter as funções bases a partir das wavelets faz-se a integração numérica destas funções até que sua resposta em freqüência seja do tipo passa baixas. Algumas das funções wavelets estudadas não possuem definição para o caso bi-dimensional, por isso foram estudadas três formas de gerar funções bi-dimensionais a partir de funções unidimensionais. Com o uso deste método foi possível gerar dez novas bases para o espaço de escala. Algumas dessas novas bases apresentaram comportamento semelhante ao apresentado pela base gaussiana, outras não. Para as funções que não apresentaram o comportamento esperado, quando usadas com as definições originais dos operadores do espaço de escala, foram propostas novas definições para tais operadores (detectores de borda e bolha). Também foram geradas duas aplicações com o espaço de escala, sendo elas um algoritmo para a segmentação de cavidades cardíacas e um algoritmo para segmentação e contagem de células sanguíneas.
Resumo:
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.
Resumo:
Este trabalho é uma síntese da transformada de Fourier na forma discreta e uma de suas principais aplicações à computação gráfica, a restauração de imagens corrompidas por movimento, seja do aparelho óptico ou da própria imagem.
Resumo:
Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good
Resumo:
In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good
Resumo:
In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user
Resumo:
The electric energy is essential to the development of modern society and its increasing demand in recent years, effect from population and economic growth, becomes the companies more interested in the quality and continuity of supply, factors regulated by ANEEL (Agência Nacional de Energia Elétrica). These factors must be attended when a permanent fault occurs in the system, where the defect location that caused the power interruption should be identified quickly, which is not a simple assignment because the current systems complexity. An example of this occurs in multiple terminals transmission lines, which interconnect existing circuits to feed the demand. These transmission lines have been adopted as a feasible solution to suply loads of magnitudes that do not justify economically the construction of new substations. This paper presents a fault location algorithm for multiple terminals transmission lines - two and three terminals. The location method is based on the use of voltage and current fundamental phasors, as well as the representation of the line through its series impedance. The wavelet transform is an effective mathematical tool in signals analysis with discontinuities and, therefore, is used to synchronize voltage and current data. The Fourier transform is another tool used in this work for extract voltage and current fundamental phasors. Tests to validate the location algorithm applicability used data from faulty signals simulated in ATP (Alternative Transients Program) as well as real data obtained from oscillographic recorders installed on CHESF s lines.
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks