975 resultados para Trace-elements
Resumo:
Laser-induced breakdown spectroscopy (LIBS) as a powerful analytical technique is applied to analyze trace-elements in fresh plant samples. We investigate the LIBS spectra of fresh holly leaves and observe more than 430 lines emitted from 25 elements and molecules in the region 230-438 nm. The influence of laser wavelength on LIBS applied to semi-quantitative analysis of trace-element contents in plant samples is studied. The results show that the UV laser has lower relative standard deviations and better repeatability for semi-quantitative analysis of trace-element contents in plant samples. This work may be helpful for improving the quantitative analysis power of LIBS applied to plant samples.
Resumo:
Hydrothermal fluid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep seawater hydrothermal activity, containing complex elements, cannot be used to study the seawater's contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig. 4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37 x 10(4) L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.
Resumo:
An off-line chelation system combined with ICP-MS technique was developed for the quantitative determination of trace elements in seawater, namely V, Co, Ni, Cu, Zn, Mo, Cd, Pb, U and rare earth elements(REEs). The system was built based on an ion chromatography equipped with MetPac((R)) CC-I chelation columns which had a strong selective chelation to these target elements within a pH range 5.2-5.6. Acidified seawater samples and NH4Ac(2 mol/L) were blended to meet suitable pH before being injected into the chelation column, thus target elements were retained while alkali and alkaline metals were excluded. Then chelated elements were eluted by HNO3 (1 mol/L) and samples were collected for ICP-MS analysis. Varying the ratio of input( gen. 200 mL) to output( gen. 5 mL), the target elements which were concentrated as 40 times as their concentrations were far beyond instrumental quantification limits. At last, a certificated seawater CASS-4 was introduced and our detected values were in good agreement with those certified values.
Resumo:
Influence of La3+ on the accumulation of trace elements (Se-75, Co-56, Rb-83, V-48, (95)mTc, and Ga-67) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+, treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of Se-75, Co-56, and Rb-83 presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of V-48. The other two trace elements, namely Tc-95m and Ga-67, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.
Resumo:
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+, treatments. Furthermore, in the control, the plant accumulates Se-75, Co-56, and V-48 all in the order roots>leaves>stems, whereas Tc-95m was in the order leaves>stems>roots. The accumulations of Se-75 and Tc-95m in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.