975 resultados para Total Variation
Resumo:
The mechanisms involved in the control of growth in chickens are too complex to be explained only under univariate analysis because all related traits are biologically correlated. Therefore, we evaluated broiler chicken performance under a multivariate approach, using the canonical discriminant analysis. A total of 1920 chicks from eight treatments, defined as the combination of four broiler chicken strains (Arbor Acres, AgRoss 308, Cobb 500 and RX) from both sexes, were housed in 48 pens. Average feed intake, average live weight, feed conversion and carcass, breast and leg weights were obtained for days 1 to 42. Canonical discriminant analysis was implemented by SAS((R)) CANDISC procedure and differences between treatments were obtained by the F-test (P < 0.05) over the squared Mahalanobis` distances. Multivariate performance from all treatments could be easily visualised because one graph was obtained from two first canonical variables, which explained 96.49% of total variation, using a SAS((R)) CONELIP macro. A clear distinction between sexes was found, where males were better than females. Also between strains, Arbor Acres, AgRoss 308 and Cobb 500 (commercial) were better than RX (experimental), Evaluation of broiler chicken performance was facilitated by the fact that the six original traits were reduced to only two canonical variables. Average live weight and carcass weight (first canonical variable) were the most important traits to discriminate treatments. The contrast between average feed intake and average live weight plus feed conversion (second canonical variable) were used to classify them. We suggest analysing performance data sets using canonical discriminant analysis.
Resumo:
ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values of the direct effects were in agreement with the values of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.
Resumo:
Fluorescent protein microscopy imaging is nowadays one of the most important tools in biomedical research. However, the resulting images present a low signal to noise ratio and a time intensity decay due to the photobleaching effect. This phenomenon is a consequence of the decreasing on the radiation emission efficiency of the tagging protein. This occurs because the fluorophore permanently loses its ability to fluoresce, due to photochemical reactions induced by the incident light. The Poisson multiplicative noise that corrupts these images, in addition with its quality degradation due to photobleaching, make long time biological observation processes very difficult. In this paper a denoising algorithm for Poisson data, where the photobleaching effect is explicitly taken into account, is described. The algorithm is designed in a Bayesian framework where the data fidelity term models the Poisson noise generation process as well as the exponential intensity decay caused by the photobleaching. The prior term is conceived with Gibbs priors and log-Euclidean potential functions, suitable to cope with the positivity constrained nature of the parameters to be estimated. Monte Carlo tests with synthetic data are presented to characterize the performance of the algorithm. One example with real data is included to illustrate its application.
Resumo:
En este proyecto se desarrollarán algoritmos numéricos para sistemas no lineales hiperbólicos-parabólicos de ecuaciones diferenciales en derivadas parciales. Dichos sistemas tienen aplicación en propagación de ondas en ámbitos aeroespaciales y astrofísicos.Objetivos generales: 1)Desarrollo y mejora de algoritmos numéricos con la finalidad de incrementar la calidad en la simulación de propagación e interacción de ondas gasdinámicas y magnetogasdinámicas no lineales. 2)Desarrollo de códigos computacionales con la finalidad de simular flujos gasdinámicos de elevada entalpía incluyendo cambios químicos, efectos dispersivos y difusivos.3)Desarrollo de códigos computacionales con la finalidad de simular flujos magnetogasdinámicos ideales y reales.4)Aplicación de los nuevos algoritmos y códigos computacionales a la solución del flujo aerotermodinámico alrededor de cuerpos que ingresan en la atmósfera terrestre. 5)Aplicación de los nuevos algoritmos y códigos computacionales a la simulación del comportamiento dinámico no lineal de arcos magnéticos en la corona solar. 6)Desarrollo de nuevos modelos para describir el comportamiento no lineal de arcos magnéticos en la corona solar.Este proyecto presenta como objetivo principal la introducción de mejoras en algoritmos numéricos para simular la propagación e interacción de ondas no lineales en dos medios gaseosos: aquellos que no poseen carga eléctrica libre (flujos gasdinámicos) y aquellos que tienen carga eléctrica libre (flujos magnetogasdinámicos). Al mismo tiempo se desarrollarán códigos computacionales que implementen las mejoras de las técnicas numéricas.Los algoritmos numéricos se aplicarán con la finalidad de incrementar el conocimiento en tópicos de interés en la ingeniería aeroespacial como es el cálculo del flujo de calor y fuerzas aerotermodinámicas que soportan objetos que ingresan a la atmósfera terrestre y en temas de astrofísica como la propagación e interacción de ondas, tanto para la transferencia de energía como para la generación de inestabilidades en arcos magnéticos de la corona solar. Estos dos temas poseen en común las técnicas y algoritmos numéricos con los que serán tratados. Las ecuaciones gasdinámicas y magnetogasdinámicas ideales conforman sistemas hiperbólicos de ecuaciones diferenciales y pueden ser solucionados utilizando "Riemann solvers" junto con el método de volúmenes finitos (Toro 1999; Udrea 1999; LeVeque 1992 y 2005). La inclusión de efectos difusivos genera que los sistemas de ecuaciones resulten hiperbólicos-parabólicos. La contribución parabólica puede ser considerada como términos fuentes y tratada adicionalmente tanto en forma explícita como implícita (Udrea 1999; LeVeque 2005).Para analizar el flujo alrededor de cuerpos que ingresan en la atmósfera se utilizarán las ecuaciones de Navier-Stokes químicamente activas, mientras la temperatura no supere los 6000K. Para mayores temperaturas es necesario considerar efectos de ionización (Anderson, 1989). Tanto los efectos difusivos como los cambios químicos serán considerados como términos fuentes en las ecuaciones de Euler. Para tratar la propagación de ondas, transferencia de energía e inestabilidades en arcos magnéticos de la corona solar se utilizarán las ecuaciones de la magnetogasdinámica ideal y real. En este caso será también conveniente implementar términos fuente para el tratamiento de fenómenos de transporte como el flujo de calor y el de radiación. Los códigos utilizarán la técnica de volúmenes finitos, junto con esquemas "Total Variation Disminishing - TVD" sobre mallas estructuradas y no estructuradas.
Resumo:
Abstract Background: Recent studies have shown changes in cardiac autonomic control of obese preadolescents. Objective: To assess the heart rate responses and cardiac autonomic modulation of obese preadolescents during constant expiratory effort. Methods: This study assessed 10 obese and 10 non-obese preadolescents aged 9 to 12 years. The body mass index of the obese group was between the 95th and 97th percentiles of the CDC National Center for Health Statistics growth charts, while that of the non-obese group, between the 5th and 85th percentiles. Initially, they underwent anthropometric and clinical assessment, and their maximum expiratory pressures were obtained. Then, the preadolescents underwent a constant expiratory effort of 70% of their maximum expiratory pressure for 20 seconds, with heart rate measurement 5 minutes before, during and 5 minutes after it. Heart rate variability (HRV) and heart rate values were analyzed by use of a software. Results: The HRV did not differ when compared before and after the constant expiratory effort intra- and intergroup. The heart rate values differed (p < 0.05) during the effort, being the total variation in non-obese preadolescents of 18.5 ± 1.5 bpm, and in obese, of 12.2 ± 1.3 bpm. Conclusion: The cardiac autonomic modulation did not differ between the groups when comparing before and after the constant expiratory effort. However, the obese group showed lower cardiovascular response to baroreceptor stimuli during the effort, suggesting lower autonomic baroreflex sensitivity.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.
Resumo:
We propose a restoration algorithm for band limited images that considers irregular(perturbed) sampling, denoising, and deconvolution. We explore the application of a family ofregularizers that allow to control the spectral behavior of the solution combined with the irregular toregular sampling algorithms proposed by H.G. Feichtinger, K. Gr¨ochenig, M. Rauth and T. Strohmer.Moreover, the constraints given by the image acquisition model are incorporated as a set of localconstraints. And the analysis of such constraints leads to an early stopping rule meant to improvethe speed of the algorithm. Finally we present experiments focused on the restoration of satellite images, where the micro-vibrations are responsible of the type of distortions we are considering here. We will compare results of the proposed method with previous methods and show an extension tozoom.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Resumo:
We introduce a simple new hypothesis testing procedure, which,based on an independent sample drawn from a certain density, detects which of $k$ nominal densities is the true density is closest to, under the total variation (L_{1}) distance. Weobtain a density-free uniform exponential bound for the probability of false detection.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Resumo:
The objective of this work was to study the genetic variability of the grasshopper Rhammatocerus schistocercoides (Orthoptera: Acrididae) using RAPD analysis among individuals from three populations, one from Colombia and two from Brazil (Goiás and Mato Grosso States). Ninety scorable binary markers were obtained by fingerprinting with 11 oligonucleotide primers. Most of the polymorphism was attributed to 42 markers with variable frequency among the different populations. Although the existence of significant difference among populations (P<0.0001), most of the genetic variability was found within populations (87.7% of total variation). Pairwise distances between Colombian and Brazilian populations were 0.12 (P<0.0001) and 0.18 (P<0.0001) for Goiás and Mato Grosso, respectively. The pairwise distance between Goiás and Mato Grosso populations was 0.06 (P<0.0001). These data indicated that the phenotypic differences among populations are associated mainly with the geographical distances between the Brazilian and Colombian populations.
Resumo:
The objectives of this work were to investigate the genetic structure of the Brazilian hair sheep breeds and to determine the origin of the Santa Inês breed. Molecular similarity was determined using Randomly Amplified Polymorphic DNA - Polymerase Chain Reaction markers in 238 individuals from five naturalized sheep breeds: Santa Inês (48 animals), Rabo Largo (48), Somali (48), Morada Nova (48) and Bergamasca (46), collected in Goiás, Sergipe, Bahia, and Ceará States as well as in the Federal District. Fifty-four loci were selected from 19 primers, after a pilot test using 140 primers. Qualitative analyses indicate diagnostic markers for all breeds. All breeds were significantly different from each other. Interbreed differences were explained by 14.92% of the total variation. Santa Inês clustered with Bergamasca (97% bootstrap) and with Rabo Largo, composing the third member of the group (81% bootstrap) while Morada Nova and Somali breeds clustered separately. Each breed should be considered as a separate management and conservation unit, and special care should be taken with Rabo Largo, Morada Nova and Somali breeds, represented by small herds in Brazil.
Resumo:
The objective of this work was to perform a quantitative analysis of the amino acid composition of soybean seeds as affected by climatic variables during seed filling. Amino acids were determined from seed samples taken at harvest in 31 multi-environment field trials carried out in Argentina. Total amino acids ranged from 31.69 to 49.14%, and total essential and nonessential amino acids varied from 12.83 to 19.02% and from 18.86 to 31.15%, respectively. Variance components expressed as the percentage of total variation showed that the environment was the most important source of variation for all traits, followed by the genotype x environment interaction. Significant explanatory linear regressions were detected for amino acid content regarding: average daily mean air temperature and cumulative solar radiation, during seed filling; precipitation minus potential evapotranspiration, during the whole reproductive period; and the combinations of these climatic variables. Each amino acid behaves differently according to environmental conditions, indicating compensatory effects among them.
Resumo:
Abstract:The objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty-nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables.