990 resultados para Topic detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: This study was performed to compare the sensitivity of ultrasonography, computerized tomography during arterial portography, delayed computerized tomography, and magnetic resonance imaging to detect focal liver lesions. Forty three patients with primary or secondary malignant liver lesions were studied prior to surgical intervention. METHODS: The results of the imaging studies were compared with intraoperative examination of the liver, intraoperative ultrasonography and pathology results (29 patients). In the non-operated (14 patients) group, we compared the number of lesions detected by each technique. RESULTS: One hundred and forty six lesions were detected. There was 84% sensitivity with computerized tomography during arterial portography, 61.3% with delayed scan, 63.3% with magnetic resonance imaging and 51% with ultrasonography in operated patients. In patients who did not undergo surgery, magnetic resonance imaging was more sensitive in detecting lesions. CONCLUSIONS: In operated and non-operated patients series, CT during arterial portography had the highest sensitivity, but magnetic resonance imaging had the most consistent overall results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On average approximately 13% of the water that is withdrawn by Canadian municipal water suppliers is lost before it reaches final users. This is an important topic for several reasons: water losses cost money, losses force water agencies to draw more water from lakes and streams thereby putting more stress on aquatic ecosystems, leaks reduce system reliability, leaks may contribute to future pipe failures, and leaks may allow contaminants to enter water systems thereby reducing water quality and threatening the health of water users. Some benefits of leak detection fall outside water agencies’ accounting purview (e.g. reduced health risks to households connected to public water supply systems) and, as a result, may not be considered adequately in water agency decision-making. Because of the regulatory environment in which Canadian water agencies operate, some of these benefits-especially those external to the agency or those that may accrue to the agency in future time periods- may not be fully counted when agencies decide on leak detection efforts. Our analysis suggests potential reforms to promote increased efforts for leak detection: adoption of a Canada-wide goal of universal water metering; development of full-cost accounting and, pricing for water supplies; and co-operation amongst the provinces to promulgate standards for leak detection efforts and provide incentives to promote improved efficiency and rational investment decision-making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the number of resources on the web exceeds by far the number of documents one can track, it becomes increasingly difficult to remain up to date on ones own areas of interest. The problem becomes more severe with the increasing fraction of multimedia data, from which it is difficult to extract some conceptual description of their contents. One way to overcome this problem are social bookmark tools, which are rapidly emerging on the web. In such systems, users are setting up lightweight conceptual structures called folksonomies, and overcome thus the knowledge acquisition bottleneck. As more and more people participate in the effort, the use of a common vocabulary becomes more and more stable. We present an approach for discovering topic-specific trends within folksonomies. It is based on a differential adaptation of the PageRank algorithm to the triadic hypergraph structure of a folksonomy. The approach allows for any kind of data, as it does not rely on the internal structure of the documents. In particular, this allows to consider different data types in the same analysis step. We run experiments on a large-scale real-world snapshot of a social bookmarking system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Despite the large scientific debate concerning potential stigmatizing effects of identifying an individual as being in an at-risk mental state (ARMS) for psychosis, studies investigating this topic from the subjective perspective of patients are rare. This study assesses whether ARMS individuals experience stigmatization and to what extent being informed about the ARMS is experienced as helpful or harmful. METHODS Eleven ARMS individuals, currently participating in the follow-up assessments of the prospective Basel Früherkennung von Psychosen (FePsy; English: Early Detection of Psychosis) study, were interviewed in detail using a semistructured qualitative interview developed for this purpose. Data were analysed using Interpretative Phenomenological Analysis. RESULTS Most individuals experiencing first symptoms reported sensing that there was 'something wrong with them' and felt in need of help. They were relieved that a specific term was assigned to their symptoms. The support received from the early detection centre was generally experienced as helpful. Many patients reported stigmatization and discrimination that appeared to be the result of altered behaviour and social withdrawal due to the prepsychotic symptoms they experienced prior to contact with the early detection clinic. CONCLUSIONS The results suggest that early detection services help individuals cope with symptoms and potential stigmatization rather than enhancing or causing the latter. More emphasis should be put on the subjective experiences of those concerned when debating the advantages and disadvantages of early detection with regard to stigma. There was no evidence for increased perceived stigma and discrimination as a result of receiving information about the ARMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Although it seems plausible that sports performance relies on high-acuity foveal vision, it could be empirically shown that myoptic blur (up to +2 diopters) does not harm performance in sport tasks that require foveal information pick-up like golf putting (Bulson, Ciuffreda, & Hung, 2008). How myoptic blur affects peripheral performance is yet unknown. Attention might be less needed for processing visual cues foveally and lead to better performance because peripheral cues are better processed as a function of reduced foveal vision, which will be tested in the current experiment. Methods: 18 sport science students with self-reported myopia volunteered as participants, all of them regularly wearing contact lenses. Exclusion criteria comprised visual correction other than myopic, correction of astigmatism and use of contact lenses out of Swiss delivery area. For each of the participants, three pairs of additional contact lenses (besides their regular lenses; used in the “plano” condition) were manufactured with an individual overcorrection to a retinal defocus of +1 to +3 diopters (referred to as “+1.00 D”, “+2.00 D”, and “+3.00 D” condition, respectively). Gaze data were acquired while participants had to perform a multiple object tracking (MOT) task that required to track 4 out of 10 moving stimuli. In addition, in 66.7 % of all trials, one of the 4 targets suddenly stopped during the motion phase for a period of 0.5 s. Stimuli moved in front of a picture of a sports hall to allow for foveal processing. Due to the directional hypotheses, the level of significance for one-tailed tests on differences was set at α = .05 and posteriori effect sizes were computed as partial eta squares (ηρ2). Results: Due to problems with the gaze-data collection, 3 participants had to be excluded from further analyses. The expectation of a centroid strategy was confirmed because gaze was closer to the centroid than the target (all p < .01). In comparison to the plano baseline, participants more often recalled all 4 targets under defocus conditions, F(1,14) = 26.13, p < .01, ηρ2 = .65. The three defocus conditions differed significantly, F(2,28) = 2.56, p = .05, ηρ2 = .16, with a higher accuracy as a function of a defocus increase and significant contrasts between conditions +1.00 D and +2.00 D (p = .03) and +1.00 D and +3.00 D (p = .03). For stop trials, significant differences could neither be found between plano baseline and defocus conditions, F(1,14) = .19, p = .67, ηρ2 = .01, nor between the three defocus conditions, F(2,28) = 1.09, p = .18, ηρ2 = .07. Participants reacted faster in “4 correct+button” trials under defocus than under plano-baseline conditions, F(1,14) = 10.77, p < .01, ηρ2 = .44. The defocus conditions differed significantly, F(2,28) = 6.16, p < .01, ηρ2 = .31, with shorter response times as a function of a defocus increase and significant contrasts between +1.00 D and +2.00 D (p = .01) and +1.00 D and +3.00 D (p < .01). Discussion: The results show that gaze behaviour in MOT is not affected to a relevant degree by a visual overcorrection up to +3 diopters. Hence, it can be taken for granted that peripheral event detection was investigated in the present study. This overcorrection, however, does not harm the capability to peripherally track objects. Moreover, if an event has to be detected peripherally, neither response accuracy nor response time is negatively affected. Findings could claim considerable relevance for all sport situations in which peripheral vision is required which now needs applied studies on this topic. References: Bulson, R. C., Ciuffreda, K. J., & Hung, G. K. (2008). The effect of retinal defocus on golf putting. Ophthalmic and Physiological Optics, 28, 334-344.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actualmente la detección del rostro humano es un tema difícil debido a varios parámetros implicados. Llega a ser de interés cada vez mayor en diversos campos de aplicaciones como en la identificación personal, la interface hombre-máquina, etc. La mayoría de las imágenes del rostro contienen un fondo que se debe eliminar/discriminar para poder así detectar el rostro humano. Así, este proyecto trata el diseño y la implementación de un sistema de detección facial humana, como el primer paso en el proceso, dejando abierto el camino, para en un posible futuro, ampliar este proyecto al siguiente paso, que sería, el Reconocimiento Facial, tema que no trataremos aquí. En la literatura científica, uno de los trabajos más importantes de detección de rostros en tiempo real es el algoritmo de Viola and Jones, que ha sido tras su uso y con las librerías de Open CV, el algoritmo elegido para el desarrollo de este proyecto. A continuación explicaré un breve resumen sobre el funcionamiento de mi aplicación. Mi aplicación puede capturar video en tiempo real y reconocer el rostro que la Webcam captura frente al resto de objetos que se pueden visualizar a través de ella. Para saber que el rostro es detectado, éste es recuadrado en su totalidad y seguido si este mueve. A su vez, si el usuario lo desea, puede guardar la imagen que la cámara esté mostrando, pudiéndola almacenar en cualquier directorio del PC. Además, incluí la opción de poder detectar el rostro humano sobre una imagen fija, cualquiera que tengamos guardada en nuestro PC, siendo mostradas el número de caras detectadas y pudiendo visualizarlas sucesivamente cuantas veces queramos. Para todo ello como bien he mencionado antes, el algoritmo usado para la detección facial es el de Viola and Jones. Este algoritmo se basa en el escaneo de toda la superficie de la imagen en busca del rostro humano, para ello, primero la imagen se transforma a escala de grises y luego se analiza dicha imagen, mostrando como resultado el rostro encuadrado. ABSTRACT Currently the detection of human face is a difficult issue due to various parameters involved. Becomes of increasing interest in various fields of applications such as personal identification, the man-machine interface, etc. Most of the face images contain a fund to be removed / discriminate in order to detect the human face. Thus, this project is the design and implementation of a human face detection system, as the first step in the process, leaving the way open for a possible future, extend this project to the next step would be, Facial Recognition , a topic not covered here. In the literature, one of the most important face detection in real time is the algorithm of Viola and Jones, who has been after use with Open CV libraries, the algorithm chosen for the development of this project. I will explain a brief summary of the performance of my application. My application can capture video in real time and recognize the face that the Webcam Capture compared to other objects that can be viewed through it. To know that the face is detected, it is fully boxed and followed if this move. In turn, if the user may want to save the image that the camera is showing, could store in any directory on your PC. I also included the option to detect the human face on a still image, whatever we have stored in your PC, being shown the number of faces detected and can view them on more times. For all as well I mentioned before, the algorithm used for face detection is that of Viola and Jones. This algorithm is based on scanning the entire surface of the image for the human face, for this, first the image is converted to gray-scale and then analyzed the image, showing results in the face framed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno de los defectos más frecuentes en los generadores síncronos son los defectos a tierra tanto en el devanado estatórico, como de excitación. Se produce un defecto cuando el aislamiento eléctrico entre las partes activas de cualquiera de estos devanados y tierra se reduce considerablemente o desaparece. La detección de los defectos a tierra en ambos devanados es un tema ampliamente estudiado a nivel industrial. Tras la detección y confirmación de la existencia del defecto, dicha falta debe ser localizada a lo largo del devanado para su reparación, para lo que habitualmente el rotor debe ser extraído del estator. Esta operación resulta especialmente compleja y cara. Además, el hecho de limitar la corriente de defecto en ambos devanados provoca que el defecto no sea localizable visualmente, pues apenas existe daño en el generador. Por ello, se deben aplicar técnicas muy laboriosas para localizar exactamente el defecto y poder así reparar el devanado. De cara a reducir el tiempo de reparación, y con ello el tiempo en que el generador esta fuera de servicio, cualquier información por parte del relé de protección acerca de la localización del defecto resultaría de gran utilidad. El principal objetivo de esta tesis doctoral ha sido el desarrollo de nuevos algoritmos que permitan la estimación de la localización de los defectos a tierra tanto en el devanado rotórico como estatórico de máquinas síncronas. Respecto al devanado de excitación, se ha presentado un nuevo método de localización de defectos a tierra para generadores con excitación estática. Este método permite incluso distinguir si el defecto se ha producido en el devanado de excitación, o en cualquiera de los componentes del sistema de excitación, esto es, transformador de excitación, conductores de alimentación del rectificador controlado, etc. En caso de defecto a tierra en del devanado rotórico, este método proporciona una estimación de su localización. Sin embargo, para poder obtener la localización del defecto, se precisa conocer el valor de resistencia de defecto. Por ello, en este trabajo se presenta además un nuevo método para la estimación de este parámetro de forma precisa. Finalmente, se presenta un nuevo método de detección de defectos a tierra, basado en el criterio direccional, que complementa el método de localización, permitiendo tener en cuenta la influencia de las capacidades a tierra del sistema. Estas capacidades resultan determinantes a la hora de localizar el defecto de forma adecuada. En relación con el devanado estatórico, en esta tesis doctoral se presenta un nuevo algoritmo de localización de defectos a tierra para generadores que dispongan de la protección de faltas a tierra basada en la inyección de baja frecuencia. Se ha propuesto un método general, que tiene en cuenta todos los parámetros del sistema, así como una versión simplificada del método para generadores con capacidades a tierra muy reducida, que podría resultar de fácil implementación en relés de protección comercial. Los algoritmos y métodos presentados se han validado mediante ensayos experimentales en un generador de laboratorio de 5 kVA, así como en un generador comercial de 106 MVA con resultados satisfactorios y prometedores. ABSTRACT One of the most common faults in synchronous generators is the ground fault in both the stator winding and the excitation winding. In case of fault, the insulation level between the active part of any of these windings and ground lowers considerably, or even disappears. The detection of ground faults in both windings is a very researched topic. The fault current is typically limited intentionally to a reduced level. This allows to detect easily the ground faults, and therefore to avoid damage in the generator. After the detection and confirmation of the existence of a ground fault, it should be located along the winding in order to repair of the machine. Then, the rotor has to be extracted, which is a very complex and expensive operation. Moreover, the fact of limiting the fault current makes that the insulation failure is not visually detectable, because there is no visible damage in the generator. Therefore, some laborious techniques have to apply to locate accurately the fault. In order to reduce the repair time, and therefore the time that the generator is out of service, any information about the approximate location of the fault would be very useful. The main objective of this doctoral thesis has been the development of new algorithms and methods to estimate the location of ground faults in the stator and in the rotor winding of synchronous generators. Regarding the excitation winding, a new location method of ground faults in excitation winding of synchronous machines with static excitation has been presented. This method allows even to detect if the fault is at the excitation winding, or in any other component of the excitation system: controlled rectifier, excitation transformer, etc. In case of ground fault in the rotor winding, this method provides an estimation of the fault location. However, in order to calculate the location, the value of fault resistance is necessary. Therefore, a new fault-resistance estimation algorithm is presented in this text. Finally, a new fault detection algorithm based on directional criterion is described to complement the fault location method. This algorithm takes into account the influence of the capacitance-to-ground of the system, which has a remarkable impact in the accuracy of the fault location. Regarding the stator winding, a new fault-location algorithm has been presented for stator winding of synchronous generators. This algorithm is applicable to generators with ground-fault protection based in low-frequency injection. A general algorithm, which takes every parameter of the system into account, has been presented. Moreover, a simplified version of the algorithm has been proposed for generators with especially low value of capacitance to ground. This simplified algorithm might be easily implementable in protective relays. The proposed methods and algorithms have been tested in a 5 kVA laboratory generator, as well as in a 106 MVA synchronous generator with satisfactory and promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mealiness is known as an important internal quality attribute of fruits/vegetables, which has significant influence on consumer purchasing decisions. Mealiness has been a topic of research interest over the past several decades. A number of destructive and nondestructive techniques are introduced for mealiness detection. Nondestructive methods are more interesting because they are rapid, noninvasive, and suitable for real-time purposes. In this review, the concept of mealiness is presented for potato, apple, and peach, followed by an in-depth discussion about applications of destructive and nondestructive techniques developed for mealiness detection. The results suggest the potential of electromagnetic-based techniques for nondestructive mealiness evaluation. Further investigations are in progress to find more appropriate nondestructive techniques as well as cost and performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social media data are produced continuously by a large and uncontrolled number of users. The dynamic nature of such data requires the sentiment and topic analysis model to be also dynamically updated, capturing the most recent language use of sentiments and topics in text. We propose a dynamic Joint Sentiment-Topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic-specific word distributions are generated according to the word distributions at previous epochs. We study three different ways of accounting for such dependency information: (1) Sliding window where the current sentiment-topic word distributions are dependent on the previous sentiment-topic-specific word distributions in the last S epochs; (2) skip model where history sentiment topic word distributions are considered by skipping some epochs in between; and (3) multiscale model where previous long- and shorttimescale distributions are taken into consideration. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011. © 2013 ACM 2157-6904/2013/12-ART5 $ 15.00.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.