983 resultados para Tissue Concentrations
Resumo:
Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.
Resumo:
The efficiency of antioxidant defenses and relationship with body burden of metal and organic contaminants has not been previously investigated in arctic seabirds, neither in chicks nor in adults. The objective of this study was to compare such defenses in chicks from three species, Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis), and Herring gull (Larus argentatus), and the relationship with tissue concentrations of essential metals such as selenium and iron and halogenated organic compounds, represented by polychlorinated biphenyl (PCB). The results showed significant species-specific differences in the antioxidant responses which also corresponded with metal and PCB levels in different ways. The capability to neutralize hydroxyl radicals (TOSC-HO°) and the activities of catalase and Se-dependent glutathione peroxidases (GPX) clearly increased in species with the higher levels of metals and PCBs, while the opposite trend was observed for Se-independent GPX, TOSC against peroxyl radicals (ROO°) and peroxynitrite (ONOOH). Less clear relationships were obtained for glutathione levels, GSH/GSSG ratio, glutathione reductase and superoxide dismutase. The results showed differences in antioxidant efficiency between the species, and some of these defenses exhibited dose-response-like relationships with measured levels of selenium, iron and XPCBs. PCBs, selenium and iron levels were positively related to the responses of antioxidants with potential to reduce HO°/H2O2 (Se-dependent GPX, CAT and TOSC against HO°). However, direct causal relationships between antioxidant responses and contaminant concentrations could not be shown on individual level. Varying levels of metals and contaminants due to different diet and age were probably the main explanations for the species differences in antioxidant defense.
Resumo:
Studies on the fate of organohalogen contaminants (OHCs) in wild top predator mammals in the Arctic have often been a challenge due to important knowledge deficiencies in the life history of the sampled animals. The present study investigated the influence of age, dietary and trans-generational factors on the fate of major lipophilic chlorinated and brominated OHCs in adipose tissue of a potential surrogate captive species for the polar bear (Ursus maritimus), the sledge dog (Canis familiaris) in West Greenland. Adult female sledge dogs (P) and their sexually-mature (F1) and/or pre-weaning pups (F1-MLK) were divided into an exposed group (EXP) fed blubber from a Greenland minke whale (Balaenoptera acutorostrata) and a control group (CON) given commercially available pork fat. Large dietary treatment-related differences in summed and individual congener/compound adipose tissue concentrations of polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs) were found between the EXP and CON groups for all the sledge dog cohorts. However, among the F1-MLK, F1 and P dogs in both of the EXP and CON groups, little or no difference existed in PBDE, HCB, CHL and PCB concentrations, suggesting higher state of equilibrium in adipose tissue concentrations from a very early stage of life. In contrast, the distribution pattern (proportions to the summed concentrations) of OHC classes, and the major congeners/ compounds constituting those classes, varied on a dietary group- and/or cohort-dependent manner. The present captive sledge dog study demonstrated the importance of the confounding effects of diet composition, mother-pup association (maternal transfer), reproductive status (nursing), and to a lesser extent age in the fate of OHCs in adipose tissue of a large top carnivore mammal.
Resumo:
Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.
Resumo:
Objective: We investigated the effect of supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine, both in the free form, on the plasma and tissue concentrations of glutamine, glutamate, and glutathione (GSH) in rats subjected to long-duration exercise. Methods: Rats were subjected to sessions of swim training. Twenty-one days before sacrifice, the animals were supplemented with DIP (1.5 g/kg, n = 6), a solution of free L-glutamine (1 g/kg) and free L-alanine (0.61 g/kg; GLN + ALA, n = 6), or water (CON, n = 6). Animals were sacrificed before (TR, n = 6) or after (LD, n = 6) long-duration exercise. Plasma concentrations of glutamine, glutamate, glucose, and ammonia and liver and muscle concentrations of glutamine, glutamate, and reduced and oxidized (GSSG) GSH were measured. Results: Higher concentrations of plasma glutamine were found in the DIP-TR and GLN + ALA-TR groups. The CON-LD group showed hyperammonemia, whereas the DIP-LD and GLN + ALA-LD groups exhibited lower concentrations of ammonia. Higher concentrations of glutamine, glutamate, and GSH/GSSG in the soleus muscle and GSH and GSH/GSSG in the liver were observed in the DIP-TR and GLN + ALA-TR groups. The DIP-LD and GLN + ALA-LD groups exhibited higher concentrations of GSH and GSH/GSSG in the soleus muscle and liver compared with the CON-LD group. Conclusion: Chronic oral administration of DIP and free GLN + ALA before long-duration exercise represents an effective source of glutamine and glutamate, which may increase muscle and liver stores of GSH and improve the redox state of the cell. (C) 2009 Published by Elsevier Inc.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.
Resumo:
An isolated rat hindlimb perfusion model carrying xenografts of the human melanoma cell line MM96 was used to study the effects of perfusion conditions on melphalan distribution. Krebs-Henseleit buffer and Hartmann's solution containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 were used as perfusates. Melphalan concentrations in perfusate, tumour nodules and normal tissues were measured using high-performance liquid chromatography (HPLC). Increasing the perfusion flow rates (from 4 to 8 mi min(-1)) resulted in higher tissue blood flow (determined with Cr-51-labelled microspheres) and melphalan uptake by tumour and normal tissues. me distribution of melphalan within tumour nodules and normal tissues was similar for both Krebs-Henseleit buffer and Hartmann's solution; however, tissue concentrations of melphalan were significantly higher for a perfusate containing 2.8% dextran 40 than for one containing 4.7% BSA. The melphalan concentration in the tumour was one-third of that found in the skin if the perfusate contained 4.7% BSA. In conclusion, this study has shown that a high perfusion flow enhances the delivery of melphalan into implanted tumour nodules and normal tissues, and a perfusate with low melphalan binding (no albumin) is preferred for maximum uptake of drug by the tumour.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Resumo:
Isolated limb infusion (ILI) is an attractive, less complex alternative to Isolated limb perfusion (ILP). It has a lower morbidity in treating localized recurrences and in transit metastases of the limb for tumours such as melanoma, Merkel cell tumour and Kaposi's sarcoma, allowing administration of high concentrations of cytotoxic agent to the affected limb under hypoxic conditions. Melphalan is the preferred cytotoxic agent for the treatment of melanoma by ILP or ILI. We report pharmacokinetic data from 12 patients treated by ILI for tumours of the limb in Brisbane. The kinetics of drug distribution in the limb was calculated using a two-compartment vascular model, where both tissue and infusate act as well-stirred compartments. Analysis of melphalan concentrations in the perfusate during ILI showed good agreement between the values measured and the concentrations predicted by the model. Recirculation and wash-out flow rates, tissue concentrations and the permeability surface area product (PS) were calculated. Correlations between the PS value and the drug concentrations In the perfusate and tissue were supported by the results. These data contribute to a better understanding of the distribution of melphalan during ILI in the limb, and offer the opportunity to optimize the drug regimen for patients undergoing ILI. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
This study sought to use a microdialysis technique to relate clinical and biochemical responses to the time course of melphalan concentrations in the subcutaneous interstitial space and in tumour tissue (melanoma, malignant fibrous histiocytoma, Merkel cell tumour and osteosarcoma) in patients undergoing regional chemotherapy by Isolated Limb Infusion (ILI). 19 patients undergoing ILI for treatment of various limb malignancies were monitored for intra-operative melphalan concentrations in plasma and, using microdialysis, in subcutaneous and tumour tissues. Peak and mean concentrations of melphalan were significantly higher in plasma than in subcutaneous or tumour microdialysate. There was no significant difference between drug peak and mean concentrations in interstitial and tumour tissue, indicating that there was no preferential uptake of melphalan into the tumours. The time course of melphalan in the microdialysate could be described by a pharmacokinetic model which assumed melphalan distributed from the plasma into the interstitial space. The model also accounted for the vascular dispersion of melphalan in the limb. Tumour response in the whole group to treatment was partial response: 53.8% (n = 7); complete response: 33.3% (n = 5); no responses 6.7% (n = 1). There was a significant association between tumour response and melphalan concentrations measured over time in subcutaneous microdialysate (P < 0.01). No significant relationship existed between the severity of toxic reactions in the limb or peak plasma creatine phosphokinase levels and peak melphalan microdialysate or plasma concentrations. It is concluded that microdialysis is a technique well suited for measuring concentrations of cytotoxic drug during ILI. The possibility of predicting actual concentrations of cytotoxic drug in the limb during ILI using our model opens an opportunity for improved drug dose calculation. The combination of predicting tissue concentrations and monitoring in microdialysate of subcutaneous tissue could help optimise ILI with regard to post-operative limb morbidity and tumour response. (C) 2001 Cancer Research Campaign http:,//www.bjcancer.com.
Resumo:
The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
La phytoextraction représente une solution environnementale prometteuse face au problème de contamination des sols en éléments traces (É.T). La présente étude s’intéresse aux différences intra et interspécifiques (S. purpurea, S. dasyclados, S. miyabeana) de trois cultivars de saule lorsqu’ils sont utilisés pour la phytoextration de six É.T. (As, Cd, Cu, Ni, Pb et Zn). Les objectifs sont (i) décrire les variations intrapécifiques du cultivar FISH CREEK (S. purpurea) lorsqu’il est utilisé pour la phytoextraction sur deux sites d’étude; et (ii) décrire les variations intra et interspécifiques des cultivars FISH CREEK (S. purpurea), SV1 (S. dasyclados) et SX67 (S. miyabeana) lorsqu’ils sont utilisés pour la phytoextraction d’un site d’étude. Les indicateurs de variations intra et interspécifiques sélectionnés sont les suivants : la biomasse totale, les concentrations en É.T. extraits et les facteurs de translocation (x ̅ pondérée des conc. É.T. dans les parties aériennes / conc. É.T. dans les racines). La contribution des propriétés du sol (degré de contamination, caractéristiques physicochimiques) à la phytoextraction a été évaluée. Les cultivars ont présenté des variations interspécifiques significatives. Cependant, les variations intraspécifiques sur un site d’étude étaient parfois plus importantes que celles mesurées entre les trois différents cultivars. L’amplitude des variations intraspécifiques que présentent le cultivar FISH CREEK sur deux sites d’étude est attribuée à l’influence du pH, de la minéralogie et au contenu en matière organique, lesquelles diffèrent entre les deux sites. Il a aussi été démontré que la phytoextraction des É.T. n’était pas systématiquement corrélée de façon positive avec le degré de contamination. Cela suggère que les concentrations en É.T. mesurées dans le sol ne peuvent pas expliquer à elles seules la variation des concentrations mesurées dans les tissus. L’implication des mécanismes de rétention dans le sol semblent être davantage responsable des variations observées. La compartimentation des É.T. suggère que le saule est efficace pour l’extraction du Cd et du Zn et qu’il est efficace pour la phytostabilisation de l’As, du Cu, du Ni, et du Pb. En ce qui concerne les quantités extraites, le cultivar FISH CREEK semble le plus performant dans la présente étude.
Resumo:
Present study consists the quantization of specific metals-- Cr, Cd, Pb, Zn and Cu observed in the experimental bivalve, Villorita species. Bivalve specimens were collected seasonally from the identified three hot spots of Vembanad Lake. Soft tissue concentrations of metals are very sensitive in reflecting changes in the ambient environment and hence important in assessing the environmental quality. Concentrations of Zn in bivalves were fairly high compared to other metals. All the stations showed a maximum concentration during premonsoon and minimum during the other two seasons. Levels of Pb, Cu, Zn, Cd and Cr are between 0-6.17mg/kg, 0-17.224mg/kg, 1.916-255.163mg/kg, 0.325-4.133mg/kg, and 0-15.233mg/kg respectively
Resumo:
This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum. Concentrations of Zn in two aphid species are dependant on species and exposure.