998 resultados para Tissue Classification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The aim of this work was to verify the differentiation between normal and pathological human carotid artery tissues by using fluorescence and reflectance spectroscopy in the 400- to 700-nm range and the spectral characterization by means of principal components analysis. Background Data: Atherosclerosis is the most common and serious pathology of the cardiovascular system. Principal components represent the main spectral characteristics that occur within the spectral data and could be used for tissue classification. Materials and Methods: Sixty postmortem carotid artery fragments (26 non-atherosclerotic and 34 atherosclerotic with non-calcified plaques) were studied. The excitation radiation consisted of a 488-nm argon laser. Two 600-mu m core optical fibers were used, one for excitation and one to collect the fluorescence radiation from the samples. The reflectance system was composed of a halogen lamp coupled to an excitation fiber positioned in one of the ports of an integrating sphere that delivered 5 mW to the sample. The photo-reflectance signal was coupled to a 1/4-m spectrograph via an optical fiber. Euclidean distance was then used to classify each principal component score into one of two classes, normal and atherosclerotic tissue, for both fluorescence and reflectance. Results: The principal components analysis allowed classification of the samples with 81% sensitivity and 88% specificity for fluorescence, and 81% sensitivity and 91% specificity for reflectance. Conclusions: Our results showed that principal components analysis could be applied to differentiate between normal and atherosclerotic tissue with high sensitivity and specificity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the use of Raman spectroscopy to identify the spectral differences between normal (N), benign hyperplasia (BPH) and adenocarcinoma (CaP) in fragments of prostate biopsies in vitro with the aim of developing a spectral diagnostic model for tissue classification. A dispersive Raman spectrometer was used with 830 nm wavelength and 80 mW excitation. Following Raman data collection and tissue histopathology (48 fragments diagnosed as N, 43 as BPH and 14 as CaP), two diagnostic models were developed in order to extract diagnostic information: the first using PCA and Mahalanobis analysis techniques and the second one a simplified biochemical model based on spectral features of cholesterol, collagen, smooth muscle cell and adipocyte. Spectral differences between N, BPH and CaP tissues, were observed mainly in the Raman bands associated with proteins, lipids, nucleic and amino acids. The PCA diagnostic model showed a sensitivity and specificity of 100%, which indicates the ability of PCA and Mahalanobis distance techniques to classify tissue changes in vitro. Also, it was found that the relative amount of collagen decreased while the amount of cholesterol and adipocyte increased with severity of the disease. Smooth muscle cell increased in BPH tissue. These characteristics were used for diagnostic purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of anti-tumor necrosis factor (anti-TNF) in juvenile idiopathic arthritis (DA), ankylosing spondylitis (AS) or psoriatic arthritis (PsA). Sixty-two patients were investigated: 7 DA; 37 AS; and 18 PsA. Caucasian race accounted for 79% and 29% were female. Mean age was 40.4 +/- 12.6years. None of the patients had a history of diabetes, and none had used oral hypoglycemic agents or insulin. Treatment was with adalimumab, infliximab and etanercept. Glucose, inflammatory markers and prednisone dose were assessed at baseline, as well as after three and six months of treatment. The mean erythrocyte sedimentation rate was significantly lower at three months and six months than at baseline (13.7 +/- 18.0 and 18 +/- 22.5 vs. 27.9 +/- 23.4 mm; p = 0.001). At baseline, three months and six months, we found the following: mean C-reactive protein levels were comparable (22.1 +/- 22.7, 14.5 +/- 30.7 and 16.0 +/- 23.8 mg/L, respectively; p = 0.26); mean glucose levels remained unchanged (90.8 +/- 22.2 mg/dl, 89.5 +/- 14.6 mg/dl and 89.8 +/- 13.6 mg/dl, respectively; p = 0.91); and mean prednisone doses were low and stable (3.9 +/- 4.9 mg/day, 3.7 +/- 4.8 mg/day and 2.6 +/- 4.0 mg/day, respectively; p = 0.23). During the first six months of treatment, anti-TNF therapy does not seem to influence glucose metabolism in JIA, AS or PsA. (C) 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To analyze the expression of the glycodelin gene to better understand the molecular environment of endometriotic lesions and to elucidate the potential mechanisms that underlie the complex physiopathology of endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Eleven healthy fertile women and 17 patients with endometriosis in the early proliferative phase of the menstrual cycle. Intervention(s): Endometrial biopsy specimens were obtained from the endometrium of healthy women without endometriosis (controls) and from eutopic and ectopic endometrium tissues (pelvic and ovarian endometriotic implants) of endometriosis patients. Main Outcome Measure(s): The glycodelin relative expression level by real-time polymerase chain reaction (PCR) analysis. Result(s): The glycodelin down-regulation found in the endometriotic lesions was 332.26 and 123.17-fold lower, respectively, when compared with the eutopic tissue and the control endometrium. Conclusion(s): Glycodelin may be one of the molecules that contributes to the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril (R) 2009;91:1676-80. (C)2009 by American Society for Reproductive Medicine.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diagnosis of idiopathic Parkinson's disease (IPD) is entirely clinical. The fact that neuronal damage begins 5-10 years before occurrence of sub-clinical signs, underlines the importance of preclinical diagnosis. A new approach for in-vivo pathophysiological assessment of IPD-related neurodegeneration was implemented based on recently developed neuroimaging methods. It is based on non- invasive magnetic resonance data sensitive to brain tissue property changes that precede macroscopic atrophy in the early stages of IPD. This research aims to determine the brain tissue property changes induced by neurodegeneration that can be linked to clinical phenotypes which will allow us to create a predictive model for early diagnosis in IPD. We hypothesized that the degree of disease progression in IPD patients will have a differential and specific impact on brain tissue properties used to create a predictive model of motor and non-motor impairment in IPD. We studied the potential of in-vivo quantitative imaging sensitive to neurodegeneration- related brain tissue characteristics to detect changes in patients with IPD. We carried out methodological work within the well established SPM8 framework to estimate the sensitivity of tissue probability maps for automated tissue classification for detection of early IPD. We performed whole-brain multi parameter mapping at high resolution followed by voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) comparing healthy subjects to IPD patients. We found a trend demonstrating non-significant tissue property changes in the olfactory bulb area using the MT and R1 parameter with p<0.001. Comparing to the IPD patients, the healthy group presented a bilateral higher MT and R1 intensity in this specific functional region. These results did not correlate with age, severity or duration of disease. We failed to demonstrate any changes with the R2* parameter. We interpreted our findings as demyelination of the olfactory tract, which is clinically represented as anosmia. However, the lack of correlation with duration or severity complicates its implications in the creation of a predictive model of impairment in IPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detailed in-vivo characterization of subcortical brain structures is essential not only to understand the basic organizational principles of the healthy brain but also for the study of the involvement of the basal ganglia in brain disorders. The particular tissue properties of basal ganglia - most importantly their high iron content, strongly affect the contrast of magnetic resonance imaging (MRI) images, hampering the accurate automated assessment of these regions. This technical challenge explains the substantial controversy in the literature about the magnitude, directionality and neurobiological interpretation of basal ganglia structural changes estimated from MRI and computational anatomy techniques. My scientific project addresses the pertinent need for accurate automated delineation of basal ganglia using two complementary strategies: ? Empirical testing of the utility of novel imaging protocols to provide superior contrast in the basal ganglia and to quantify brain tissue properties; ? Improvement of the algorithms for the reliable automated detection of basal ganglia and thalamus Previous research demonstrated that MRI protocols based on magnetization transfer (MT) saturation maps provide optimal grey-white matter contrast in subcortical structures compared with the widely used Tl-weighted (Tlw) images (Helms et al., 2009). Under the assumption of a direct impact of brain tissue properties on MR contrast my first study addressed the question of the mechanisms underlying the regional specificities effect of the basal ganglia. I used established whole-brain voxel-based methods to test for grey matter volume differences between MT and Tlw imaging protocols with an emphasis on subcortical structures. I applied a regression model to explain the observed grey matter differences from the regionally specific impact of brain tissue properties on the MR contrast. The results of my first project prompted further methodological developments to create adequate priors for the basal ganglia and thalamus allowing optimal automated delineation of these structures in a probabilistic tissue classification framework. I established a standardized workflow for manual labelling of the basal ganglia, thalamus and cerebellar dentate to create new tissue probability maps from quantitative MR maps featuring optimal grey-white matter contrast in subcortical areas. The validation step of the new tissue priors included a comparison of the classification performance with the existing probability maps. In my third project I continued investigating the factors impacting automated brain tissue classification that result in interpretational shortcomings when using Tlw MRI data in the framework of computational anatomy. While the intensity in Tlw images is predominantly

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paediatric diagnostic radiology can be considered as a separate specialty and with distinct characteristics of the radiology applied in adult patients. This in reason of the variability in the anatomical structures size and bigger sensitivity of tissues. The literature present in its majority methodologies for segmentation and tissue classification in adult patients, and works on tissue quantification are rare. This work had for objective the development of a biological tissue classifier and quantifier algorithm, from histograms, and that converts the quantified average thickness of these tissues for its respective simulator materials. The results will be used in the optimization process of paediatrics images, in future works, since these patients are frequently over exposed to the radiation in the repeated attempts of if getting considered good quality radiographic images. The developed algorithm was capable to read and store the name of all the archives, in the operational system, to filter artifacs, to count and quantify each biological tissues from the histogram of the examination, to obtain the biological tissues average thicknesses and to convert this value into its respective simulator material. The results show that it is possible to distinguish bone, soft, fat and pulmonary tissues from histograms of tomographic examinations of thorax. The quantification of the constituent materials of anthropomorphic phantom made by the algorithm, compared with the data of literature shows that the biggest difference was of 21,6% for bone. However, the literature shows that variations of up to 30% in bone thickness do not influence of significant form in the radiographic image quality. The average thicknesses of biological tissues, quantified for paediatrics patients, show that one phantom can simulate patients with distinct DAP ranges, since variations... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast alpha-smooth muscle actin expression and the tissue expression of interleukin-4, transforming growth factor-beta, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-beta expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast alpha-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast alpha-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast alpha-smooth muscle actin expression predominates in areas of late remodeling. These events seem to be regulated by basic fibroblast growth factor and interleukin-4 tissue expression, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.