915 resultados para Tin oxide, Nanoparticles, Dye-Sensitized Solar Cells
Resumo:
TiO2 films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. It has been found that the sputtering pressure is a very important parameter for the structure of the deposited TiO2 films. When the pressure is lower than 1 Pa, the deposited has a dense structure and shows a preferred orientation along the [101] direction. However, the nanorod structure has been obtained as the sputtering pressure is higher than 1 Pa. These nanorods structure TiO2 film shows a preferred orientation along the [110] direction. The x-ray diffraction and the Raman scattering measurements show both the dense and the nanostructure TiO2 films have only an anatase phase, no other phase has been obtained. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. The TEM measurement shows that the nanorods have a very rough surface. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different sputtering pressures as photoelectrode. And the effect of the sputtering pressure on the properties of the photoelectric conversion of the DSSCs has been studied.
Resumo:
The oil price rises more and more, and the world energy consumption is projected to expand by 50 percent from 2005 to 2030. Nowadays intensive research is focused on the development of alternative energies. Among them, there are dye-sensitized nanocrystalline solar cells (DSSCs) “the third generation solar cells”. The latter have gained attention during the last decade and are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic. At present DSSCs with ruthenium based dyes exhibit highest efficiencies (ca 11%). The objective of the present work is to fabricate, characterize and improve the performance of DSSCs based on metal free dyes as sensitizers, especially on perylene derivatives. The work begins by a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the DSSCs. Chapter 2 and 3 discuss the state of the art of sensitizers used in DSSCs, present the compounds used as sensitizer in the present work and illustrate practical issues of experimental techniques and device preparation. A comparative study of electrolyte-DSSCs based on P1, P4, P7, P8, P9, and P10 are presented in chapter 4. Experimental results show that the dye structure plays a crucial role in the performance of the devices. The dye based on the spiro-concept (bipolar spiro compound) exhibited a higher efficiency than the non-spiro compounds. The presence of tert-butylpyridine as additive in the electrolyte was found to increase the open circuit voltage and simultaneously decrease the efficiency. The presence of lithium ions in the electrolyte increases both output current and the efficiency. The sensitivity of the dye to cations contained in the electrolyte was investigated in the chapter 5. FT-IR and UV-Vis were used to investigate the in-situ coordination of the cation to the adsorbed dye in the working devices. The open-circuit voltage was found to depend on the number of coordination sites in the dye. P1 with most coordination sites has shown the lowest potential drop, opposite to P7, which is less sensitive to cations in the working cells. A strategy to improve the dye adsorption onto the TiO2 surface, and thus the light harvesting efficiency of the photoanode by UV treatment, is presented in chapter 6. The treatment of the TiO2 film with UV light generates hydroxyl groups and renders the TiO2 surface more and more hydrophilic. The treated TiO2 surface reacts readily with the acid anhydride group of the dye that acts as an anchoring group and improves the dye adsorption. The short-circuit current density and the efficiency of the electrolyte-based dye cells was considerably improved by the UV treatment of the TiO2 film. Solid-state dye-sensitized solar cells (SSDs) based on spiro-MeOTAD (used as hole transport material) are studied in chapter 7. The efficiency of SSDs was globally found to be lower than that of electrolyte-based solar cells. That was due to poor pore filling of the dye-loaded TiO2 film by the spin-coated spiro-MeOTAD and to the significantly slower charge transport in the spiro-MeOTAD compared to the electrolyte redox mediator. However, the presence of the donor moieties in P1 that are structurally similar to spiro-MeOTAD was found to improve the wettability of the P1-loaded TiO2 film. As a consequence the performance of the P1-based solid-state cells is better compared to the cells based on non-spiro compounds.
Resumo:
Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work reports on the changes of performance of solid-state cells dye-sensitized solar cells with the variation of concentration of spiro-OMeTAD between 5% and 25% in the fabrication of the cell. Variations of charge recombination and capacitance correlate with the improvement of current-potential characteristics at increasing spiro-OMeTAD content, which is explained by reduction of transport resistance for hole transport, the increase of charge separation in the dye molecules, and importantly, with the increase of the β-factor in the recombination resistance, that causes a reduction of the diode ideality factor. © 2010 Materials Research Society.
Resumo:
Le Dye – Sensitized Solar Cells (DSSC) sono attualmente considerate tra le alternative più promettenti al fotovoltaico tradizionale. I ridotti costi di produzione e l’elevata versatilità di utilizzo rappresentano i punti di forza di questi dispositivi innovativi. Ad oggi la ricerca è concentrata prevalentemente sull’incremento delle prestazioni delle DSSC, ottenibile solamente attraverso un miglioramento delle funzioni dei singoli componenti e dell’interazione sinergica tra questi. Tra i componenti, ha recentemente assunto particolare interesse il blocking layer (BL), costituito generalmente da un film sottile di TiO2 depositato sulla superficie dell’anodo (FTO) e in grado di ottimizzare i fenomeni all’interfaccia FTO/TiO2/elettrolita. Nel corso di questo lavoro di tesi si è rivolta l’attenzione prevalentemente sulle caratteristiche del BLs (ad esempio proprietà morfologico – strutturali) cercando di mettere in correlazione il processo di deposizione con le caratteristiche finali del film ottenuto. A questo scopo è stato ottimizzato un processo di deposizione dei film via spin coating, a partire da soluzioni acquosa o alcolica di precursore (TiCl4). I film ottenuti sono stati confrontati con quelli depositati tramite un processo di dip coating riportato in letteratura. I BLs sono stati quindi caratterizzati tramite microscopia (SEM – AFM), spettrofotometria (UV.- Vis) e misure elettrochimiche (CV – EIS). I risultati ottenuti hanno messo in evidenza come i rivestimenti ottenuti da soluzione acquosa di precursore, indipendentemente dalla tecnica di deposizione utilizzata (spin coating o dip coating) diano origine a film disomogenei e scarsamente riproducibili, pertanto non idonei per l’applicazione nelle DSSC. Viceversa, i BLs ottenuti via spin coating dalla soluzione alcolica di TiCl4 sono risultati riproducibili, omogenei, e uniformemente distribuiti sulla superficie di FTO. Infine, l’analisi EIS ha in particolare evidenziato un effettivo aumento della resistenza al trasferimento di carica tra elettrodo FTO ed elettrolita in presenza di questi BLs, fenomeno generalmente associato ad un efficace blocking effect.
Resumo:
Two BDF-based organic sensitizers, as first examples for their use in dye-sensitized solar cells, are prepared and characterized. They yield promising power conversion efficiencies of up to 5.5 and high open circuit voltages up to 0.82 V. This work demonstrates that the BDF chromophore acts as an effective donor in organic sensitizers.
Resumo:
A new quinoxaline-fused tetrathiafulvalene-based sensitizer has been prepared and characterized. The resulting power conversion efficiency of 6.47% represents the best performance to date for tetrathiafulvalene-sensitized solar cells.
Physicochemical study of synthetic dyes adsorption on TiO2 thin films for dye sensitized solar cells