869 resultados para Time-varying channel response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effect of pregnancy and smoking on endothelial function using brachial artery flow-mediated dilation (FMD) and to determine the time necessary until the occurrence of maximum brachial artery dilation after stimulus. This study was an observational study evaluating 133 women, who were grouped as follows: non-smoking pregnant women (N = 47), smoking pregnant women (N = 33), non-smoking women (N = 34), and smoking pregnant women (N = 19). The diameter of the brachial artery was measured at baseline and at 30, 60, 90 and 120 s after stimulus. The relative change of brachial artery was determined for each of these four moments. FMD measured at 60 s after stimulus was compared between the groups. The maximum FMD was observed at 60 s after cuff release in all groups. FMD was greater among non-smoking pregnant women compared to smoking pregnant women (11.50 +/- A 5.77 vs. 8.74 +/- A 4.83; p = 0.03) and also between non-smoking non-pregnant women compared to smoking non-pregnant women (10.52 +/- A 4.76 vs. 7.21 +/- A 5.57; p = 0.03). Maximum FMD was observed approximately 60 s after stimulus in all groups regardless of smoking and pregnancy status. The smoking habit seems to lead to endothelial dysfunction both in pregnant and non-pregnant women, as demonstrated by the lower FMD in smokers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applied econometricians often fail to impose economic regularity constraints in the exact form economic theory prescribes. We show how the Singular Value Decomposition (SVD) Theorem and Markov Chain Monte Carlo (MCMC) methods can be used to rigorously impose time- and firm-varying equality and inequality constraints. To illustrate the technique we estimate a system of translog input demand functions subject to all the constraints implied by economic theory, including observation-varying symmetry and concavity constraints. Results are presented in the form of characteristics of the estimated posterior distributions of functions of the parameters. Copyright (C) 2001 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time-varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time-varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a dynamic multipath general-to-specific algorithm to capture structural instability in the link between euro area sovereign bond yield spreads against Germany and their underlying determinants over the period January 1999 – August 2011. We offer new evidence suggesting a significant heterogeneity across countries, both in terms of the risk factors determining spreads over time as well as in terms of the magnitude of their impact on spreads. Our findings suggest that the relationship between euro area sovereign risk and the underlying fundamentals is strongly timevarying, turning from inactive to active since the onset of the global financial crisis and further intensifying during the sovereign debt crisis. As a general rule, the set of financial and macro spreads’ determinants in the euro area is rather unstable but generally becomes richer and stronger in significance as the crisis evolves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a method to estimate time varying coefficients structuralVARs which are non-recursive and potentially overidentified. The procedureallows for linear and non-linear restrictions on the parameters, maintainsthe multi-move structure of standard algorithms and can be used toestimate structural models with different identification restrictions. We studythe transmission of monetary policy shocks and compare the results with thoseobtained with traditional methods.