967 resultados para Time Series Analisys
Resumo:
Ten year official condemnation records of one officially inspected poultry abattoir in state of Sao Paulo. Brazil, were analyzed. Seasonal and cyclical trends were analyzed in relation to traumatic lesions and airsacculitis. which were the most relevant official condemnation causes Time series analysis of the records, seasonal indexes and moving averages was used to describe the adherence to the mathematical model and to offer preventive management strategies for the slaughter house industry Although cause-effect relationships were not defined, some insight was given into the causal mechanisms that generated the series (C) 2010 Elsevier B V All rights reserved
Resumo:
Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Resumo:
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
Resumo:
Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.
Resumo:
The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.
Resumo:
This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.
Resumo:
INTRODUCTION: A time series study of admissions, deaths and acute cases was conducted in order to evaluate the context of Chagas disease in Pernambuco. METHODS: Data reported to the Information Technology Department of the Brazilian National Health Service between 1980 and 2008 was collected for regions and Federal Units of Brazil; and microregions and municipalities of Pernambuco. Rates (per 100,000 inhabitants) of hospitalization, mortality and acute cases were calculated using a national hospital database (SIH), a national mortality database (SIM) and the national Information System for Notifiable Diseases (SINAN), respectively. RESULTS: The national average for Chagas disease admissions was 0.99 from 1995 to 2008. Pernambuco obtained a mean of 0.39 in the same period, with the highest rates being concentrated in the interior of the state. The state obtained a mean mortality rate of 1.56 between 1980 and 2007, which was lower than the national average (3.66). The mortality rate has tended to decline nationally, while it has remained relatively unchanged in Pernambuco. Interpolating national rates of admissions and deaths, mortality rates were higher than hospitalization rates between 1995 and 2007. The same occurred in Pernambuco, except for 2003. Between 2001 and 2006, rates for acute cases were 0.56 and 0.21 for Brazil and Pernambuco, respectively. CONCLUSIONS: Although a decrease in Chagas mortality has occurred in Brazil, the disease remains a serious public health problem, especially in the Northeast region. It is thus essential that medical care, prevention and control regarding Chagas disease be maintained and improved.
Resumo:
The real convergence hypothesis has spurred a myriad of empirical tests and approaches in the economic literature. This Work Project intends to test for real output and growth convergence in all N(N-1)/2 possible pairs of output and output growth gaps of 14 Eurozone countries. This paper follows a time-series approach, as it tests for the presence of unit roots and persistence changes in the above mentioned pairs of output gaps, as well as for the existence of growth convergence with autoregressive models. Overall, significantly greater evidence has been found to support growth convergence rather than output convergence in our sample.