818 resultados para Timber.
Resumo:
As seen from exterior.
Resumo:
This paper studies the application of commercial biocides to old maritime pine timber structures (Pinus pinaster Ait.) that have previously been impregnated with other products. A method was developed in the laboratory to be used in situ to determine the impregnation depth achieved by a new generation biocide product applied to timber from an old building. This timber had once been treated with an unknown product difficult to characterize without extensive analysis. The test was initially developed in laboratory conditions and later tested on elements of the roof structure of an 18th century building. In both cases the results were promising and mutually consistent with penetration depths for some treatments reaching 2.0 cm. The application in situ proved the tests viability and simplicity of execution giving a clear indication on the feasibility of possible re-treatments.
Resumo:
This article studies the possibility of using market available glued-laminated timber (GLT) based on melamine-urea-formaldehyde (MUF) adhesives as an alternative to traditional solid timber sleepers. The study comprised an examination of the effect of creosote treatment on the short-term and durability after accelerated aging of the glue lines (delamination and shear strength) and the potential for full sapwood penetration by the creosote. Creosote treatment showed a negative effect on shear strength and delamination, more severe in the nonstructural than the structural GLT specimens tested. Full penetration of creosote into the sapwood was not achieved. GLT elements based on MUF adhesives can be considered an alternative to solid wood sleepers if specific grading of lamellas, proper treatment schedule, and highly controlled factory production are implemented.
Resumo:
Some of the properties sought in seismic design of buildings are also considered fundamental to guarantee structural robustness. Moreover, some key concepts are common to both seismic and robustness design. In fact, both analyses consider events with a very small probability of occurrence, and consequently, a significant level of damage is admissible. As very rare events,in both cases, the actions are extremely hard to quantify. The acceptance of limited damage requires a system based analysis of structures, rather than an element by element methodology, as employed for other load cases. As for robustness analysis, in seismic design the main objective is to guarantee that the structure survives an earthquake, without extensive damage. In the case of seismic design, this is achieved by guaranteeing the dissipation of energy through plastic hinges distributed in the structure. For this to be possible, some key properties must be assured, in particular ductility and redundancy. The same properties could be fundamental in robustness design, as a structure can only sustain significant damage if capable of distributing stresses to parts of the structure unaffected by the triggering event. Timber is often used for primary load‐bearing elements in single storey long‐span structures for public buildings and arenas, where severe consequences can be expected if one or more of the primary load bearing elements fail. The structural system used for these structures consists of main frames, secondary elements and bracing elements. The main frame, composed by columns and beams, can be seen as key elements in the system and should be designed with high safety against failure and under strict quality control. The main frames may sometimes be designed with moment resisting joints between columns and beams. Scenarios, where one or more of these key elements, fail should be considered at least for high consequence buildings. Two alternative strategies may be applied: isolation of collapsing sections and, provision of alternate load paths [1]. The first one is relatively straightforward to provide by deliberately designing the secondary structural system less strong and stiff. Alternatively, the secondary structural system and the bracing system can be design so that loss of capacity in the main frame does not lead to the collapse. A case study has been selected aiming to assess the consequences of these two different strategies, in particular, under seismic loads.
Resumo:
Workshop of COST Actions TU0601 and E55 September 21-22 2009, Ljubljana, Slovenia