951 resultados para Tide-waters
Resumo:
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (delta D, delta(18)O, (3)H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of (222)Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m(-3) which were in opposite relationship with observed salinities. Time series measurements of (222)Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m(-3)), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the (222)Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase (222)Rn concentration during lower sea level, and opposite, during high tides where the (222)Rn activity concentration is smaller. The estimated SGD fluxes varied during 22-26 November between 8 and 40 cm d(-1), with an average value of 21 cm d(-1) (the unit is cm(3)/cm(2) per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity. which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater-seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater). which claims for potential environmental concern with implications on the management of freshwater resources in the region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.
Resumo:
The Princeton Ocean Model is used to study the circulation features in the Pearl River Estuary and their responses to tide, river discharge, wind, and heat flux in the winter dry and summer wet seasons. The model has an orthogonal curvilinear grid in the horizontal plane with variable spacing from 0.5 km in the estuary to 1 km on the shelf and 15 sigma levels in the vertical direction. The initial conditions and the subtidal open boundary forcing are obtained from an associated larger-scale model of the northern South China Sea. Buoyancy forcing uses the climatological monthly heat fluxes and river discharges, and both the climatological monthly wind and the realistic wind are used in the sensitivity experiments. The tidal forcing is represented by sinusoidal functions with the observed amplitudes and phases. In this paper, the simulated tide is first examined. The simulated seasonal distributions of the salinity, as well as the temporal variations of the salinity and velocity over a tidal cycle are described and then compared with the in situ survey data from July 1999 and January 2000. The model successfully reproduces the main hydrodynamic processes, such as the stratification, mixing, frontal dynamics, summer upwelling, two-layer gravitational circulation, etc., and the distributions of hydrodynamic parameters in the Pearl River Estuary and coastal waters for both the winter and the summer season.
Resumo:
The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.
Resumo:
Species composition and abundance of phytoplankton and chlorophyll concentration were measured at three horizons of 9 stations in the Nha Trang Bay of the South China Sea in March 1998. Vertical distribution of fluorescence parameters, temperature and irradiance were measured in the 0-18 m layer of the water column at 21 stations. It was shown that according to biomass (B) and chlorophyll concentration (Chl) the Bay is mezotrophic. B and Chl in the water column increased seaward. Mean values of Chl in the southern part of the Bay exceeded those in northern part. Mean values of B were similar. B and Chl in the bottom layer exceeded ones in the upper layer. Diatoms dominated in species diversity and abundance. Diatom Guinardia striata made the main contribution to phytoplankton biomass. Similarity of phytoplankton was high. In the upper layer phytoplankton was photoinhibited during the most part of the light period, but at the bottom photosynthetic activity was high. Water column B varied in an order of magnitude during the daily cycle mainly because of B variations in the bottom layer due to tide flow.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A plan of those parts of Boston and the towns in its vicinity : with the waters and flats adjacent which are immediately or remotely connected with the contemplated design of erecting perpetual tide-mills, published by Benjamin Dearborn, 1814. It was originally issued with Massachusetts House Document no. 18 of June 1814 -- petitions to incorporate Boston and Roxbury Mill Corp. Scale [1:15,840]. Covers portions of Boston, Brookline, Cambridge, and Somerville. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as selected roads (existing and proposed), propsosed tide mills and dams, drainage, canals, bridges, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
Contains a table of the predicted times and heights of the high and low waters for each day of the year at a number of places, which are designated as reference stations.
Resumo:
The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Ria de Aveiro, a Portuguese coastal lagoon that exchanges water with the Atlantic Ocean, received the effluent from a chlor-alkali industry for over 50 years; consequently several tons of mercury had been buried in the sediments of an inner basin. To assess the importance (and seasonal variation) of the lagoon waters as carriers of mercury to the nearby coastal area, we measured total mercury levels in several compartments: in surface sediments, in surface and deep waters (including dissolved and particulate matter!, and in biota. Dissolved (reactive and total) mercury concentrations both in surface and deep waters were low (<1 to 15 ng L '). Mean mercury values in suspended particulate matter varied hetween 0.2 and 0.6 jxg g ' and in sediments between 1 and 9 ng g '. Aquatic organisms displayed levels below regulatory limits but exhibited some bioaccumulation of mercury, with concentrations ranging from 0.05 to 0.8 ^ig g ' Idry weight (dw)|. No seasonal pattern was found in this study for mercury-related determinations. Levels found in the estuary mouth during ebb tide provide evidence for the transport of mercury to the coastal zone. No significant changes in the partition of mercury between dissolved and particulate phases were found in the coastal waters in comparison with the values found in the estuary mouth. In spite of the high levels of mercury found inside some areas of the lagoon, the wide web of islands and channels allows some spreading of contaminants before they reach the coastal waters. Moreover, the low efficiency of local marine sediments in trapping mercury contributes to a dilution of mercury transported in suspended particulate matter over a broader area, reducing the impact in the nearby manne coastal zone.
Resumo:
Layered structures, known as micro structures in marine environments are common features of which their formation mechanisms are first reviewed. Some methods of measuring such features based on the measurements and theories are presented for the Persian Gulf. This includes determination of layers with temperature inversion (TI) associated with double diffusive convection (DDC). The relevant associated parameters are estimated from ROPME CTD data for late winter and early summer of 1992. Only in certain parts temperature inversion and DDC are observed which seem to produce layered structures. Observations show that the places with TI and DDC are mainly confined to the frontal regions where the water entering the Persian Gulf and water exiting it meet, nearly along the axis of the Gulf. TI and DDC is mainly observer in the northern bound of the front. Typical density ratio for regions with TI and DDC is 0.7 to 0.2 and the mean depth is at about 37 ± 3 m for the Persian Gulf. TI and DDC are also found in the outflow from the Persian Gulf to the Oman Gulf which is found to be at a depth of about 250 m. Horizontal addiction and reduction of solar heating seem to be the main reasons in producing layers with TI and DDC. It is also found that the regime of DDC in the Persian Gulf is more diffusive and the flow associated with intrusion layers with TI is non-isopycnal (more unstable). However for the Oman sea both diffusive and finger regime are observed and the flow is inferred to be isopycnal (more stable statically). Typical heat and salt fluxes due to DDC are found to be 6 W/m2 and 0.36 W/m2 respectively. Effective salinity diffusivity, Ks and heat diffusivity, Kr have been estimated for the places with DDC in the Persian Gulf and Oman Gulf (Ks=1.1 *10-7 m2/s, KT= 1.88*10-6 m2/s). Their values are within the values obtained by others. The buoyancy frequency for the Persian Gulf with typical mean value of 0.05s-1 is much higher than these of the free Oceans. Such large values of N (typically 0.05 s-1) indicate that processes such as tide can produce strong internal waves which may be another factor in producing layered structures. This requires separate study.
Resumo:
The catastrophic event of red tide has happened in the Strait of Hormuz, the Persian Gulf and Gulf of Oman from late summer 2008 to spring 2009. With its devastating effects, the phenomenon shocked all the countries located in the margin of the Persian Gulf and the Gulf of Oman and caused considerable losses to fishery industries, tourism, and tourist and trade economy of the region. In the maritime cruise carried out by the Persian Gulf and Gulf of Oman Ecological Research Institute, field data, including temperature, salinity, chlorophyll-a, dissolved oxygen and algal density were obtained for this research. Satellite information was received from MODIS and MERIS and SeaWiFS sensors. Temperature and surface chlorophyll images were obtained and compared with the field data and data of PROBE model. The results obtained from the present research indicated that with the occurrence of harmful algal blooms (HAB), the Chlorophyll-a and the dissolved oxygen contents increased in the surface water. Maximum algal density was seen in the northern coasts of the Strait of Hormuz. Less concentration of algal density was detected in deep and surface offshore water. Our results show that the occurred algal bloom was the result of seawater temperature drop, water circulation and the adverse environmental pollutions caused by industrial and urban sewages entering the coastal waters in this region of the Persian Gulf ,This red tide phenomenon was started in the Strait of Hormuz and eventually covered about 140,000 km2 of the Persian Gulf and total area of Strait of Hormuz and it survived for 10 months which is a record amongst the occurred algal blooms across the world. Temperature and chlorophyll satellite images were proportionate to the measured values obtained by the field method. This indicates that satellite measurements have acceptable precisions and they can be used in sea monitoring and modeling.
Resumo:
In the Tropics, continental shelves governed by western boundary currents are considered to be among the least productive ocean margins in the world, unless eddy-induced shelf-edge upwelling becomes significant. The eastern Brazilian shelf in the Southwest Atlantic is one of these, and since the slight nutrient input from continental sources is extremely oligotrophic. It is characterized by complex bathymetry with the presence of shallow banks and seamounts. In this work, a full three-dimensional nonlinear primitive equation ocean model is used to demonstrate that the interaction of tidal currents and the bottom topography of the east Brazil continental shelf is capable of producing local upwelling of South Atlantic Central Water, bringing nutrients up from deep waters to the surface layer. Such upper layer enrichment is found to be of significance in increasing local primary productivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.