991 resultados para TiO2 nanotube array
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Well-aligned TiO2/Ti nanotube arrays were synthesized by anodic oxidation of titanium foil in 0.5 wt.% HF in various anoclization voltages. The images of filed emission scanning electron microscopy indicate that the nanotubes structure parameters, such as diameter, wall thickness and density, can be controlled by adjusting the anoclization voltage. The peaks at 25.3 degrees and 48.0 degrees of X-ray diffraction pattern illuminate that the TiO2 nanotube arrays annealed at 500 degrees C are mainly in anatase phase. The filed emission (FE) properties of the samples were investigated. A turn-on electric field 7.8 V/mu m, a field enhancement factors approximately 870 and a highest FE current density 3.4 mA/cm(2) were obtained. The emission current (2.3 mA/cm(2) at 18.8 V/mu m) was quite stable within 480 min. The results show that the FE properties of TiO2/Ti have much relation to the structure parameters.
Resumo:
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 degrees C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3-10 mu m. Raman spectra show two strong peaks about 1332 cm (1) and 1598 cm (1), indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/mu m, no evident decay at 3.4 mA/cm(2) in 480 min. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The present work illustrates the effect of electrolyte composition on the self-organized TiO2 nanotube arrays electrode preparation. The influence of structural and surface morphology of the TiO2 nanotube-like anode on their photoactivity and photoelectrocatalytic performance was also investigated. TiO2 nanotubular array electrodes are grown by anodization of Ti foil in 0.25wt % NH4F/glycerol/water, but nanowires can be obtained in 4% HF-DMSO as supporting electrolyte, even when both are subjected to electrochemical anodization at 30V during 50 h. The morphological characteristics are analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FEG-SEM). The electrodes were successfully applied in photoelectrocatalytic oxidation of 4,4'-oxydianiline (ODAN) in aqueous solution, as a model of a harmful pollutant. Complete removal of the aromatic amine was obtained after 3 hours of photoelectrocatalytic treatment on nanotubular arrays electrodes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Despite a favourable morphology, anodized and ordered TiO2 nanotubes are incapable of showing electrochromic properties in comparison to many other metal oxide counterparts. To tackle this issue, MoO3 of 5 to 15 nm thickness was electrodeposited onto TiO2 nanotube arrays. A homogenous MoO3 coating was obtained and the crystal phase of the electrodeposited coating was determined to be α-MoO3. The electronic and optical augmentations of the MoO3 coated TiO2 platforms were evaluated through electrochromic measurements. The MoO3/TiO2 system showed a 4-fold increase in optical density over bare TiO2 when the thickness of the MoO3 coating was optimised. The enhancement was ascribed to (a) the α-MoO3 coating reducing the bandgap of the composite material, which shifted the band edge of the TiO2 platform, and subsequently increased the charge carrier transfer of the overall system and (b) the layered morphology of α-MoO3 that increased the intercalation probability and also provided direct pathways for charge carrier transfer.
Resumo:
The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.
Resumo:
Titanium dioxide (TiO2) nanotubes are appealing to research communities due to their excellent functional properties. However, there is still a lack of understanding of their mechanical properties. In this work, we conduct molecular dynamics (MD) simulations to investigate the mechanical behaviour of rutile and amorphous TiO2 nanotubes. The results indicate that the rutile TiO2 nanotube has a much higher Young's modulus (∼800 GPa) than the amorphous one (∼400 GPa). Under tensile loading, rutile nanotubes fail in the form of brittle fracture but significant ductility (up to 30%) has been observed in amorphous nanotubes. This is attributed to a unique ‘repairing’ mechanism via bond reconstruction at under-coordinated sites as well as bond conversion at over-coordinated sites. In addition, it is observed that the fracture strength of rutile nanotubes is strongly dependent on their free surfaces. These findings are considered to be useful for development of TiO2 nanostructures with improved mechanical properties.
Resumo:
In this paper, we propose a new design configuration for a carbon nanotube (CNT) array based pulsed field emission device to stabilize the field emission current. In the new design, we consider a pointed height distribution of the carbon nanotube array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The randomly oriented CNTs are assumed to be grown on a metallic substrate in the form of a thin film. A model of field emission from an array of CNTs under diode configuration was proposed and validated by experiments. Despite high output, the current in such a thin film device often decays drastically. The present paper is focused on understanding this problem. The random orientation of the CNTs and the electromechanical interaction are modeled to explain the self-assembly. The degraded state of the CNTs and the electromechanical force are employed to update the orientation of the CNTs. Pulsed field emission current at the device scale is finally obtained by using the Fowler-Nordheim equation by considering a dynamic electric field across the cathode and the anode and integration of current densities over the computational cell surfaces on the anode side. Furthermore we compare the subsequent performance of the pointed array with the conventionally used random and uniform arrays and show that the proposed design outperforms the conventional designs by several orders of magnitude. Based on the developed model, numerical simulations aimed at understanding the effects of various geometric parameters and their statistical features on the device current history are reported.