795 resultados para TiO2 nanoparticles
Resumo:
In the present study, nanocrystalline titanium dioxide (TiO2) was prepared by sol–gel method at low temperature from titanium tetraisopropoxide (TTIP) and characterized by different techniques (gas adsorption, XRD, TEM and FTIR). Variables of the synthesis, such as the hydrolyzing agent (acetic acid or isopropanol) and calcination temperatures (300–800 °C), were analyzed to get uniform size TiO2 nanoparticles. The effect that these two variables have on the structure of the resultant TiO2 nanoparticles and on their photocatalytic activity is investigated. The photocatalytic activities of TiO2 nanoparticles were evaluated for propene oxidation at low concentration (100 ppmv) under two different kinds of UV light (UV-A ∼ 365 nm and UV-C ∼ 257.7 nm) and compared with Degussa TiO2 P-25, used as reference sample. The results show that both hydrolyzing agents allow to prepare TiO2 nanoparticles and that the hydrolyzing agent influences the crystalline structure and its change with the thermal treatments. Interestingly, the prepared TiO2 nanoparticles possess anatase phase with small crystalline size, high surface area and higher photocatalytic activity for propene oxidation than commercial TiO2 (Degussa P-25) under UV-light. Curiously, these prepared TiO2 nanoparticles are more active with the 365 nm source than with the 257.7 nm UV-light, which is a remarkable advantage from an application point of view. Additionally, the obtained results are particularly good when acetic acid is the hydrolyzing agent at both wavelengths used, possibly due to the high crystallinity, low anatase phase size and high surface oxygen groups’ content in the nanoparticles prepared with it, in comparison to those prepared using isopropanol.
Resumo:
Nanocystalline TiO2 particles were successfully synthesized on porous hosts (SBA-15 and ZSM-15) via a sol-gel impregnation method. Resulting nanocomposites were characterized by XRD, TEM, BET surface analysis, Raman and UV-vis diffuse reflectance spectroscopy, and their photocatalytic activity for H2 production evaluated. XRD evidences the formation of anatase nanoparticles over both ZSM-5 and SBA-15 porous supports, with TEM highlighting a strong particle size dependence on titania precursor concentration. Photocatalytic activities of TiO2/ZSM-5 and TiO2/SBA-15 composites were significantly enhanced compared to pure TiO2, owing to the smaller TiO2 particle size and higher surface area of the former. TiO2 loadings over the porous supports and concomitant photocatalytic hydrogen production were optimized with respect to light absorption, available surface reaction sites and particle size. 10%TiO2/ZSM-5 and 20%TiO2/SBA-15 proved the most active photocatalysts, exhibiting extraordinary hydrogen evolution rates of 10,000 and 8800μmolgTiO2 -1 h-1 under full arc, associated with high external quantum efficiencies of 12.6% and 5.4% respectively under 365nm irradiation.
Resumo:
In order to inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl) triethoxysilane (APTES), which were then deposited and fixed onto the surface of paper samples via a simple, dip-coating process in water at room temperature. The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much greater stability to UV-illumination than uncoated blank reference paper. Very little, or no, photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-nanoparticle-treated paper is observed. There are many other potential applications for this Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to protect their whiteness and maintain their brightness. © 2014 Elsevier Ltd.
Resumo:
Lo studio è orientato alla determinazione dei rischi tossici posti dalle nanoparticelle di diossido di titanio rilasciate in ambiente marino. L’organismo modello utilizzato per questo studio è la diatomea Thalassiosira pseudonana, la quale è stata scelta per la sua semplicità biologica unita alla fondamentale rilevanza nella catena alimentare e nell’ecosistema marino. Oltre alle nanoparticelle prodotte industrialmente, questo studio ha lo scopo di determinare e confrontare la tossicità delle nanoparticelle utilizzate in alcuni prodotti di cura personale (in particolare crema solare e dentifricio), estraendole direttamente da essi. I nostri risultati mostrano una notevole ridondanza nel legame tra la natura (il tipo) delle nanoparticelle e l’inibizione della normale crescita delle diatomee, che supera la correlazione con tutti gli altri parametri monitorati (concentrazione di nanoparticelle, tempo di esposizione, pH, carica superficiale e dimensione delle particelle stesse), sebbene gli altri parametri risultino direttamente legati agli effetti inibitori. Tali risultati suggeriscono un’intensificazione della ricerca nell’ambito delle nanotecnologie, orientata allo sviluppo di nanomateriali “sostenibili”, ovvero dei quali sono note le potenzialità di impiego, ma anche gli aspetti negativi, che possono di conseguenza essere monitorati con maggiore consapevolezza.
Resumo:
Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.
Resumo:
The occupational risks in the nanotechnology research laboratories are an important topic since a great number of researchers are involved in this area. The risk assessment performed by both qualitative and quantitative methods is a necessary step for the management of the occupational risks. Risk assessment could be performed by qualitative methods that gather consensus in the scientific community. It is also possible to use quantitative methods, based in different technics and metrics, as indicative exposure limits are been settled by several institutions. While performing the risk assessment, the information on the materials used is very important and, if it is not updated, it could create a bias in the assessment results. The exposure to TiO2 nanoparticles risk was assessed in a research laboratory using a quantitative exposure method and qualitative risk assessment methods. It was found the results from direct-reading Condensation Particle Counter (CPC) equipment and the CB Nanotool seem to be related and aligned, while the results obtained from the use of the Stoffenmanager Nano seem to indicate a higher risk level.
Resumo:
High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
In the present work TiO2 films were formed over Indium Tin Oxide (ITO) employing cathodic electrophoretic deposition (Cathodic-EPD) and Dr. Blade Technique. The films were characterized by electrochemical techniques in order to compare their electronic properties; as well as, their photoelectrochemical behavior. The electrochemical performance showed by the films, allowed to relate the modification occurring during the Cathodic-EPD, with the partial reduction of TiO2 nanoparticles, generating Ti3+ defects. These trapping states are modifying the electronic properties of the film, and diminishing the transport of the photoelectrogenerated electrons toward ITO.
Resumo:
The Zn-TiO2nanocomposite films were prepared by electrodeposition, using an acidic zinc sulphate solution with TiO2 nanoparticles in suspension. The as-deposited samples have been heated in air at 450 ºC for 6 h. The XRD and SEM analyses pointed out to the metal matrix conversion from Zn to ZnO and a rich morphology of needles-shaped grains. These materials were used on the photoelectrochemical degradation of AO7, which was efficiently degraded, with 40% of color removal, after 2 h period at 1.0 V, under white light irradiation. The apparent first order rate constant of the photoelectrodegradation reaction was 4.12 x 10-3 min-1.
Resumo:
Photocatalytic materials can minimize atmospheric pollution by decomposing certain organic and inorganic pollutants using sunlight as an energy source. In this paper, the development of a methodology to measure the photocatalytic potential of mortar containing TiO2 nanoparticles is reported. The results indicate that up to 40% of NOx can be degraded by Portland cement mortar containing 30-50% of TiO2, which validates the method developed for evaluating the photocatalytic potential of materials.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.