869 resultados para Thyroid Gland -- drug effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3B Carbon Dust, H and HH Carbon Pencils; Dr. Norman Thompson, University of Michigan Department of Surgery

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3B Carbon Dust, H and HH Carbon Pencils; Dr. Norman Thompson, University of Michigan Department of Surgery

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of propylthiouracil oral treatment (400 mg/day per bird for 20 days) on body and thyroid weight, rectal temperature and plasma metabolic parameters of ducks (Cairina moschata) was determined. Propylthiouracil treatment produced a reduction (P less than .01) in body weight and an increase (P less than .01) in thyroid weight. The antithyroid drug also produced a decrease in rectal temperature starting from the 15th day of treatment, but did not significantly change blood glucose. Plasma free fatty acids and cholesterol concentrations progressively increased from the 5th and 10th day, respectively, in treated animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a model of high trophic level carnivores, sledge dogs were fed from 2 to 18 months of age with minke whale blubber containing organohalogen compounds (OHC) corresponding to 128 µg PCB/day. Controls were fed uncontaminated porcine fat. Thyroid hormone levels were assessed in 7 exposed and 7 control sister bitches (sampled at age 6-18 months) and 4 exposed and 4 control pups, fed the same diet as their mothers (sampled age 3-12 months). Lower free and total T3 and T4 were seen in exposed vs. control bitches beyond 10 months of age, and total T3 was lower through 3-12 months of age in exposed pups. A negative correlation with thyroid gland weight was significant for SumDDT, as was a positive association with total T3 for dieldrin. This study therefore supports observational data that OHCs may adversely affect thyroid functions, and it suggests that OHC exposure duration of 10 months or more may be required for current OHC contamination levels to result in detectable adverse effects on thyroid hormone dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacological effects of a number of centrally acting drugs have been compared in euthyroid mice and mice made hyperthyroid by pretreatment with sodium-1-thyroxine. The potencies of two barbiturates, pentobarbitone and thiopentone - as indicated by the duration of their hypnotic actions and their acute toxicities - are increased in hyperthyroid mice. An acutely active uncoupler of phosphorylative oxidation is 2, 4-dinitrophenol, an agent which proved to be a potent hypnotic when administered intracerebrally. An attempt has been made to relate the mechanism of action of the barbiturates to the uncoupling effects of thyroxine and 2, 4-dinitrophenol. The pharmacological effects of chlorpromazine, reserpine and amphetamine-like drugs have also been studied in hyperthyroid mice. After pretreatment with thyroxine, mice show a reduced tendency to become hypothermic after chlorpromazine or reserpine; in fact, under suitable laboratory conditions these agents produce a hyperthermic effect. Yet their known depressant effects upon locomotor activity were not substantially altered. Thus it appeared that depression of locomotor activity and hypothermia are not necessarily correlated, an observation at variance with previously held opinion. These results have been discussed in the light of our knowledge of the role of the thyroid gland in thermoregulation. The actions of tremorine and its metabolite, oxotremorine, have also been examined. Hyperthyroid animals are less susceptible to both the hypothermia and tremor produced by these agents. An attempt is made to explain these observations, in view of the known mechanism of action of oxotremorine and the tremorgenic actions that thyroxine may have. A number of experimental methods have been used to study the anti-nociceptive (analgesic) effects of drugs in euthyroid and hyperthyroid mice. The sites and mechanisms of action of these drugs and the known actions of thyroxine have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) that have been heavily used in consumer products such as furniture foams, plastics, and textiles since the mid-1970’s. BFRs are added to products in order to meet state flammability standards intended to increase indoor safety in the event of a fire. The three commercial PBDE mixtures, Penta-, Octa-, and DecaBDE, have all been banned in the United States, however, limited use of DecaBDE is still permitted. PBDEs were phased out of production and added to the Stockholm Convention due to concerns over their environmental persistence and toxicity. Human exposure to PBDEs occurs primarily through the inadvertent ingestion of contaminated house dust, as well as though dietary sources. Despite the phase-out and discontinued use of PBDEs, human exposure to this class of chemicals is likely to continue for decades due to the continued use of treated products and existing environmental reservoirs of PBDEs. Extensive research over the years has shown that PBDEs disrupt thyroid hormone (TH) levels and neurodevelopmental endpoints in rodent and fish models. Additionally, there is growing epidemiological evidence linking PBDE exposure in humans to altered TH homeostasis and neurodevelopmental impairments in children. Due to the importance of THs throughout gestation, there is a great need to understand the effects of BFRs on the developing fetus. Specifically, the placenta plays a critical role in the transport, metabolism, and delivery of THs to the fetal compartment during pregnancy and is a likely target for BFR bioaccumulation and endocrine disruption. The central hypothesis of this dissertation research is that BFRs disrupt the activity of TH sulfotransferase (SULT) enzymes, thereby altering TH concentrations in the placenta.

In the first aim of this dissertation research, the concentrations of PBDEs and 2,4,6-TBP were measured in a cohort of 102 placenta tissue samples from an ongoing pregnancy cohort in Durham, NC. Methods were developed for the extraction and analysis of the BFR analytes. It was found that 2,4,6-TBP was significantly correlated with all PBDE analytes, indicating that 2,4,6-TBP may share common product applications with PBDEs or that 2,4,6-TBP is a metabolite of PBDE compounds. Additionally, this was the first study to measure 2,4,6-TBP in human placenta tissues.

In the second aim of this dissertation research, the placenta tissue concentrations of THs, as well as the endogenous activity of deiodinase (DI) and TH SULT enzymes were quantified using the same cohort of 102 placenta tissue samples. Enzyme activity was detected in all samples and this was the first study to measure TH DI and SULT activity in human placenta tissues. Enzyme activities and TH concentrations were compared with BFR concentrations measured in Aim 1. There were few statistically significant associations observed for the combined data, however, upon stratifying the data set based on infant sex, additional significant associations were observed. For example, among males, those with the highest concentrations of BDE-99 in placenta had T3 levels 0.80 times those with the lowest concentration of BDE-99 (95% confidence interval (CI): 0.59, 1.07). Whereas females with the highest concentrations of BDE-99 in placenta had T3 levels 1.50 times those with the lowest concentration of BDE-99 (95% CI: 1.10, 2.04). Additionally, all BFR analyte concentrations were higher in the placenta of males versus females and they were significantly higher for 2,4,6-TBP and BDE-209. 3,3’-T2 SULT activity was significantly higher in female placenta tissues, while type 3 DI activity was significantly higher in male placenta tissues. This research is the first to show sex-specific differences in the bioaccumulation of BFRs in human placenta tissue, as well as differences in TH concentrations and endogenous DI and SULT activity. The underlying mechanisms of these observed sex differences warrant further investigation.

In the third aim of this dissertation research, the effects of BFRs were examined in a human choriocarcinoma placenta cell line, BeWo. Michaelis-Menten parameters and inhibition curves were calculated for 2,4,6-TBP, 3-OH BDE-47, and 6-OH BDE-47. 2,4,6-TBP was shown to be the most potent inhibitor of 3,3’-T2 SULT activity with a calculated IC50 value of 11.6 nM. It was also shown that 2,4,6-TBP and 3-OH BDE-47 exhibit mixed inhibition of 3,3’-T2 sulfation in BeWo cell homogenates. Next, a series of cell culture exposure experiments were performed using 1, 6, 12, and 24 hour exposure durations. Once again, 2,4,6-TBP was shown to be the most potent inhibitor of basal 3,3’-T2 SULT activity by significantly decreasing activity at the high and medium dose (1 M and 0.5 M, respectively) at all measured time points. Interestingly, BDE-99 was also shown to inhibit basal 3,3’-T2 SULT activity in BeWo cells following the 24 hour exposure, despite exhibiting no inhibitory effects in the BeWo cell homogenate experiments. This indicates that BDE-99 must act through a pathway other than direct enzyme inhibition. Following exposures, the TH concentrations in the cell culture growth media and mRNA expression of TH-related genes were also examined. There was no observed effect of BFR treatment on these endpoints. Future work should focus on determining the downstream biological effects of TH SULT disruption in placental cells, as well as the underlying mechanisms of action responsible for reductions in basal TH SULT activity following BFR exposure.

This was one of the first studies to measure BFRs in a cohort of placenta tissue samples from the United States and the first study to measure THs, DI activity, and SULT activity in human placenta tissues. This research provides a novel contribution to our growing understanding of the effects of BFRs on TH homeostasis within the human placenta, and provides further evidence for sex-specific differences within this important organ. Future research should continue to investigate the effects of environmental contaminants on TH homeostasis within the placenta, as this represents the most critical and vulnerable stage of human development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.