984 resultados para Thymic stromal cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS(MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase ( MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed ""promiscuous gene expression"" (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80(+) mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrathymic T lymphocyte differentiation proceeds from complex interactions between prothymocytes of bone marrow origin and cells of the thymic stroma, epithelial cells and "acessory" cells (macrophages and/or interdigitating cells). The present paper describes the role of the accessoty cell compartment in this intrathymic process. Acessory cells produce factors which are involved in thymocyte proliferation (interleukin 1, prostaglandins, deoxynucleosides). Cell-cell interaction between "accessory" cells and thymocytes is required for the regulation of interleukin production. Prothymocytes, the precursors of all thymocyte subsets, need the accessory cell compartment for their IL2 dependent proliferation and their differentiation. Accessory cells of the thymic stroma may be involved in the intrathymic selection process at the prothymocyte level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human T-lymphotropic virus type-1 (HTLV-1) is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC) express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Antigen-specific T lymphocytes constantly patrol the body to search for invading pathogens. Given the large external and internal body surfaces that need to be surveyed, a sophisticated strategy is necessary to facilitate encounters between T cells and pathogens. Dendritic cells present at all body surfaces are specialized in capturing pathogens and bringing them to T zones of secondary lymphoid organs, such as the lymph nodes and the spleen. Here, dendritic cells present antigenic fragments and activate the rare antigen-specific T lymphocytes. This induction of an immune response is facilitated in multiple ways by a dense network of poorly characterized stromal cells, termed fibroblastic reticular cells (FRCs). They constitutively produce the chemokines CCL21 and CCL19, which attract naïve T cells and dendritic cells into the T zone. Further, they provide an adhesion scaffold for dendritic cells and a migration scaffold for naïve T cells, allowing efficient screening of dendritic cell by thousands of T cells. FRCs also form a system of microchannels (conduits) that allows rapid transport of antigen or cytokines from the subcapsular sinus to the T zone. We characterized lymph node FRCS by flow cytometry, immunofluorescence microscopy, real time PCR and functional assays and could show that FRCs are a unique type of myofibroblasts which produce the T cell survival factor IL-7. This function was shown to be critically involved in regulating the size of the peripheral T cell pool and further demonstrates the importance of FRCs in maintaining immunocompetence. As we observed that some dendritic cells also express the receptor for IL-7, we expected a similar function of IL-7 in their survival. Surprisingly, we found no role for IL-7 in their survival but in their development. Analysis of hematopoietic precursors suggested that part of the dendritic cell pool develops out of an IL-7 dependent precursor, which maybe shared with lymphocytes. During the induction of an immune response, lymph node homeostasis is drastically altered when the lymph node expands several-fold in size to accommodate many more lymphocytes. Here, we describe that this expansion of the T zone is accompanied by the activation and proliferation of FRCs thereby preserving T zone architecture and function. This expansion of the FRC network is regulated by antigen-independent and -dependent events. It demonstrates the incredible plasticity of this organ allowing clonal expansion of antigen-specific lymphocytes. Résumé : Les lymphocytes T, spécifiques pour un antigène particulier, patrouillent constamment le corps à la recherche de l'invasion de pathogène. A cause des grandes surfaces externes et internes du corps, une stratégie sophistiquée est nécessaire afin de faciliter les rencontres entre les cellules T et les agents pathogènes. Les cellules dendritiques présentes dans toutes les surfaces du corps sont spécialisées dans la capture des agents pathogènes et dans le transport vers les zones T des organes lymphoïdes secondaires, comme les ganglions lymphatiques et la rate. Dans ces organes, les cellules dendritiques présentent les fragments antigéniques et activent les lymphocytes T rares. L'induction de cette réponse immunitaire est facilitée de différentes manières par un réseau dense de cellules strornales mal caractérisé, appelées 'fibroblastic reticular tells' (FRCs). FRCs produisent constitutivement les chimiokines CCL21 et CCL19, qui attirent les lymphocytes T naïfs et les cellules dendritiques vers la zone T. En outre, elles donnent une base d'adhérence pour les cellules dendritiques et elles attirent les cellules T naïves vers les cellules dendritiques. Les FRCs forment des petits canaux (ou conduits) qui permettent le transport rapide d'antigènes solubles ou de cytokines vers la zone T. Nous avons caractérisé les FRCs par cytométrie en flux, immunofluorescence et par PCR en temps réel et nous avons démontré que les FRCs sont un type unique de rnyofibroblastes qui produisent un facteur de survie des cellules T, l'Interleukine-7. Il a été démontré que cette fonction est cruciale afin d'augmenter la taille et la diversité du répertoire de cellules T, et ainsi, maintenir l'immunocompétence. Comme nous avons observé que certaines cellules dendritiques expriment également le récepteur de l'IL-7, nous avons testé une fonction similaire dans leur survie. Étonnamment, nous n'avons pas trouvé de rôle pour l'IL-7 dans leur survie, mais dans leur développement. L'analyse des précurseurs hématopoïétiques a suggéré qu'une fraction des cellules dendritiques se développe à partir des précurseurs dépendants de l'IL-7, qui sont probablement partagés avec les lymphocytes. Au cours de l'induction d'une réponse immunitaire, l'homéostasie du ganglion lymphatique est considérablement modifiée. En effet, sa taille augmente considérablement afin d'accueillir un plus grand nombre de lymphocytes. Nous décrivons ici que cet élargissement de la zone T est accompagné par l'activation et 1a prolifération des FRCs, préservant l'architecture et la fonction de la zone T. Cette expansion du réseau des FRCs est régie par des évènements à la fois dépendants et indépendants de l'antigène. Cela montre l'incroyable plasticité de cet organe qui permet l'expansion clonale des lymphocytes T spécifiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of serum IgG antibodies elicited in human infants is much shorter than when such responses are elicited later in life. The reasons for this rapid waning of antigen-specific antibodies elicited in infancy are yet unknown. We have recently shown that adoptively transferred tetanus toxoid (TT)-specific plasmablasts (PBs) efficiently reach the bone marrow (BM) of infant mice. However, TT-specific PBs fail to persist in the early-life BM, suggesting that they fail to receive the molecular signals that support their survival/differentiation. Using a proliferation-inducing ligand (APRIL)- and B-cell activating factor (BAFF) B-lymphocyte stimulator (BLyS)-deficient mice, we demonstrate here that APRIL is a critical factor for the establishment of the adult BM reservoir of anti-TT IgG-secreting cells. Through in vitro analyses of PB/plasma cell (PC) survival/differentiation, we show that APRIL induces the expression of Bcl-X(L) by a preferential binding to heparan sulfate proteoglycans at the surface of CD138(+) cells. Last, we identify BM-resident macrophages as the main cells that provide survival signals to PBs and show that this function is slowly acquired in early life, in parallel to a progressive acquisition of APRIL expression. Altogether, this identifies APRIL as a critical signal for PB survival that is poorly expressed in the early-life BM compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although NK cells in the mouse are thought to develop in the bone marrow, a small population of NK cells in the thymus has been shown to derive from a GATA3-dependent pathway. Characteristically, thymic NK cells express CD127 and few Ly49 molecules and lack CD11b. Because these NK cells develop in the thymus, the question of their relationship to the T cell lineage has been raised. Using several different mouse models, we find that unlike T cells, thymic NK cells are not the progeny of Rorc-expressing progenitors and do not express Rag2 or rearrange the TCRγ locus. We further demonstrate that thymic NK cells develop independently of the Notch signaling pathway, supporting the idea that thymic NK cells represent bona fide NK cells that can develop independently of all T cell precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Innate immune sensors control key cytokines that regulate T-cell priming and T-cell fate. This is particularly evident in allergic reactions, which represent ideal systems to study the interplay of innate and adaptive immunity. In patients with contact dermatitis, inflammasome-mediated IL-1 activation is responsible for a TH1 immune response. Surprisingly, the IL-1 signaling pathway was also proposed to control the activation of thymic stromal lymphopoietin (TSLP), a cytokine implicated in development of the TH2 response in patients with atopic dermatitis (AD) and asthma. OBJECTIVES: We sought to assess the effect of the inflammasome on TSLP expression levels and the development of AD. METHODS: We studied the effect of the inflammasome activator 2,4-dinitrofluorobenzene, and IL-1β on TSLP mRNA expression levels in mouse and human cell lines (in vitro assays), as well as in live mice and on human skin transplants. We also assessed the effect of 2,4-dinitrofluorobenzene on TSLP and the TH2 response in mice in which the inflammasome and IL-1 signaling pathways were blocked, either genetically or pharmacologically, in 2 models of AD. RESULTS: We provide in vitro and in vivo evidence that inflammasome activation has an inhibitory role on TSLP mRNA expression and TH2 cell fate in the skin. We also show that solvents influence the activation of TSLP and IL-1β and direct the T-cell fate to a given hapten. CONCLUSION: Our observations strongly suggest that the TH1 versus TH2 cell fate decision is regulated at multiple levels and starts with innate immune events occurring within peripheral epithelial tissues.