921 resultados para Three-phase line analysis
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise as replacement for doublyfed slip-ring generators for wind power applications by offering reduced capital and operational costs due to its brushless operation. In order to facilitate its commercial deployment, the capabilities of the BDFIG system to comply with grid code requirements have to be assessed. This paper, for the first time, studies the performance of the BDFIG under grid fault ride-through and presents the dynamic behaviour of the machine during three-phase symmetrical voltage dips. Both full and partial voltage dips are studied using a vector model. Simulation and experimental results are provided for a 180 frame BDFIG.
Resumo:
Eigenvector and eigenvalue analyses are carried out for double three-phase transmission lines, studying the application of a constant and real phase-mode transformation matrix and the errors of this application to mode line models. Employing some line transposition types, exact results are obtained with a single real transformation matrix based on Clarke's matrix and line geometrical characteristics. It is shown that the proposed technique leads to insignificant errors when a nontransposed case is considered. For both cases, transposed and nontransposed, the access to the electrical values (voltage and current, for example) is provided through a simple matrix multiplication without convolution methods. Using this facility, an interesting model for transmission line analysis is obtained even though the nontransposed case errors are not eliminated. The main advantages of the model are related to the transformation matrix: single, real, frequency independent, and identical for voltage and current.
Resumo:
This paper shows the results of experimental investigations of three-phase banks composed of single-phase transformers and three-phase three-limb core transformers under simultaneous alternating and direct current excitations, for several winding connections. Harmonic analysis of excitation currents for different de saturation levels is performed.
Resumo:
In this paper is shown the development of a transmission line, based on discrete circuit elements that provide responses directly in the time domain and phase. This model is valid for ideally transposed rows represent the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal field. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the field lines modal.
Resumo:
A robust 12 kW rectifier with low THD in the line currents, based on an 18-pulse transformer arrangement with reduced kVA capacities followed by a high-frequency isolation stage is presented in this work. Three full-bridge (buck-based) converters are used to allow galvanic isolation and to balance the dc-link currents, without current sensing or current controller. The topology provides a regulated dc output with a very simple and well-known control strategy and natural three-phase power factor correction. The phase-shift PWM technique, with zero-voltage switching is used for the high-frequency dc-dc stage. Analytical results from Fourier analysis of winding currents and the vector diagram of winding voltages are presented. Experimental results from a 12 kW prototype are shown in the paper to verify the efficiency, robustness and simplicity of the command circuitry to the proposed concept.
Resumo:
The results presented in this paper are based on a research about the application of approximated transformation matrices for electromagnetic transient analyses and simulations in transmission lines. Initially, it has developed the application of a single real transformation matrix for a double three-phase transmission lines, because the symmetry of the distribution of the phase conductors and the ground wires. After this, the same type of transformation matrix has applied for symmetrical single three-phase transmission lines. Analyzing asymmetrical single three-phase lines, it has used three different line configurations. For these transmission line types, the errors between the eigenvalues and the approximated results, called quasi modes, have been considered negligible. on the other hand, the quasi mode eigenvalue matrix for each case was not a diagonal one. and the relative values of the off-diagonal elements of the approximated quasi mode matrix are not negligible, mainly for the low frequencies. Based on this problem, a correction procedure has been applied for minimizing the mentioned relative values. For the correction procedure application, symmetrical and asymmetrical single three-phase transmission line samples have been used. Checking the correction procedure results, analyses and simulations have been carried out in mode and time domain. In this paper, the last results of mentioned research are presented and they related to the time domain simulations.
Resumo:
This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.
Resumo:
Clarke's matrix has been used as an eigenvector matrix for transposed three-phase transmission lines and it can be applied as a phase-mode transformation matrix for transposed cases. Considering untransposed three-phase transmission lines, Clarke's matrix is not an exact eigenvector matrix. In this case, the errors related to the diagonal elements of the Z and Y matrices can be considered negligible, if these diagonal elements are compared to the exact elements in domain mode. The mentioned comparisons are performed based on the error and frequency scan analyses. From these analyses and considering untransposed asymmetrical three-phase transmission lines, a correction procedure is determined searching for better results from the Clarke's matrix use as a phase-mode transformation matrix. Using the Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. Applying the corrected transformation matrices, the relative values of the off-diagonal elements are decreased. The comparisons among the results of these analyses show that the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2006 IEEE.
Resumo:
Some constant matrices can be used as phase-mode transformation matrices for transposed three-phase transmission lines. Clarke's matrix is one of these options. Its application as a phase-mode transformation matrix for untransposed three-phase transmission lines has been analyzed through error and frequency scan comparisons. Based on an actual untransposed asymmetrical three-phase transmission line example, a correction procedure is applied searching for better results from the Clarke's matrix applicaton as a phase-mode transformation matrix. The error analyses are carried out using Clarke's matrix and the new transformation matrices obtained from the correction procedure. Applying Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. If the the corrected transformation matrices are used, the relative values of the off-diagonal elements are decreased. Based on the results of these analyses, the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2007 IEEE.
Resumo:
This paper investigates the major similarities and discrepancies among three important current decompositions proposed for the interpretation of unbalanced and/or non linear three-phase four-wire power circuits. The considered approaches were the so-called FBD Theory, the pq-Theory and the CPT. Although the methods are based on different concepts, the results obtained under ideal conditions (sinusoidal and balanced signals) are very similar. The main differences appear in the presence of unbalanced and non linear load conditions. It will be demonstrated and discussed how the choice of the voltage referential and the return conductor impedance can influence in the resulting current components, as well as, the way of interpreting a power circuit with return conductor. Under linear unbalanced conditions, both FBD and pq-Theory suggest that the some current components contain a third-order harmonic. Besides, neither pq-Theory nor FBD method are able to provide accurate information for reactive current under unbalanced and distorted conditions, what can be done by means of the CPT. © 2009 IEEE.
Resumo:
The objective of this paper is to show a methodology to estimate the longitudinal parameters of transmission lines. The method is based on the modal analysis theory and developed from the currents and voltages measured at the sending and receiving ends of the line. Another proposal is to estimate the line impedance in function of the real-time load apparent power and power factor. The procedure is applied for a non-transposed 440 kV three-phase line. © 2011 IEEE.