926 resultados para Three term recurrence relations
Resumo:
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.
Resumo:
A positive measure psi defined on [a, b] such that its moments mu(n) = integral(b)(a)t(n) d psi(t) exist for n = 0, +/-1, +/-2. can be called a strong positive measure on [a, b] When 0 <= a < b <= infinity the sequence of polynomials {Q(n)} defined by integral(b)(a) t(-n+s) Q(n)(t) d psi(t) = 0, s = 0, ., n - 1, exist and they are referred here as L-orthogonal polynomials We look at the connection between two sequences of L-orthogonal polynomials {Q(n)((1))} and {Q(n)((0))} associated with two closely related strong positive measures and th defined on [a, b]. To be precise, the measures are related to each other by (t - kappa) d psi(1)(t) = gamma d psi(0)(t). where (t - kappa)/gamma is positive when t is an element of (n, 6). As applications of our study. numerical generation of new L-orthogonal polynomials and monotonicity properties of the zeros of a certain class of L-orthogonal polynomials are looked at. (C) 2010 IMACS Published by Elsevier B V All rights reserved
Resumo:
We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Szego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process is in principle a candidate method for this task, but in practice it is confined to sparse matrices and is restarted periodically because roundoff errors affect its three-term recurrence scheme and degrade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead technique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary similarity transformations that are prone to numerical instabilities. Such concomitant difficulties have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from within a general framework, we present a new elimination technique combining orthogonal similarity transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications of this study include eigenvalue calculation and the approximation of matrix functions.
Resumo:
The aim of this paper is to establish some mixture distributions that arise in stochastic processes. Some basic functions associated with the probability mass function of the mixture distributions, such as k-th moments, characteristic function and factorial moments are computed. Further we obtain a three-term recurrence relation for each established mixture distribution.
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
PURPOSE With pilonidal sinus disease (PSD) incidence increasing and patients freely choosing their surgeon, patients' interest issues have been brought forward estimating patient satisfaction following pilonidal sinus surgery. The influence of wound healing time and long-term recurrence rate on patient satisfaction in primary PSD surgery has not been investigated yet. METHODS Five hundred eighty-three patients (German military cohort) were interviewed, compiling wound healing time, aesthetic satisfaction, long-term recurrence-free survival and patient satisfaction having undergone primary open (PO) treatment, marsupialization (MARS) or primary midline closure (PMC) treatment. Recurrence rate was determined by Kaplan-Meier calculation following up to 20 years after primary PSD surgery. RESULTS Patient satisfaction ranking from 1 to 10 (10 = max. satisfied) showed an average satisfaction of 8.2 (range 0-10; 95% confidence interval (CI) 7891-8250). In-hospital stay time was significantly longer in primary open (PO) and marsupialization (MARS) group as compared to primary midline closure (PMC; p < 0.0001, Kruskal-Wallis test). Satisfaction was comparable between treatment groups, and was neither linked to in-hospital stay time nor to longer outpatient wound care period or total treatment time. Recurrence-free survival, as seen in the PO and PMC treatment group, revealed a highly significant difference for all patients. Improvement in MARS patients with versus without recurrence was low, as satisfaction with primary treatment was lower as the other groups. CONCLUSIONS Neither choice of surgical treatment nor treatment duration within hospital or after hospital influences patient satisfaction, as long as recurrence-free survival can be provided. Marsupialization was ranked lower in both groups (with or without recurrence), and should be abandoned, as patients are significantly less satisfied with either results, independent of recurrence.
Resumo:
The addition of a topologically massive term to an admittedly nonunitary three-dimensional massive model, be it an electromagnetic system or a gravitational one, does not cure its nonunitarity. What about the enlargement of avowedly unitary massive models by way of a topologically massive term? the electromagnetic models remain unitary after the topological augmentation but, surprisingly enough, the gravitational ones have their unitarity spoiled. Here we analyze these issues and present the explanation why unitary massive gravitational models, unlike unitary massive electromagnetic ones, cannot coexist from the viewpoint of unitarity with topologically massive terms. We also discuss the novel features of the three-term effective field models that are gauge-invariant.
Resumo:
The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
La úlcera venosa es una revelación clínica severa de la insuficiencia venosa crónica. Es la causa del 54-76% de las úlceras venosas de miembros inferiores. La ciencia médica ha generado diversos procedimientos en el manejo de esta patología, es así como a partir de conocimientos en fisiopatología de la ulceración venosa, se han aplicado procedimientos como opción de tratamiento. Objetivos: Valorar si el uso de rutina de la oclusión endoluminal con espuma guiada por ecografía del sistema venoso superficial insuficiente, en adicción al manejo convencional de la ulcera venosa (vendaje no compresivo, gasa vaselinada y curaciones) podría mejorar la tasa de curación a las 24 semanas de tratamiento. Diseño: Estudio clínico aleatorizado prospectivo de pacientes de la consulta externa de cirugía vascular del Hospital Occidente de Kennedy-Bogotá, durante el 01 de junio del 2011 hasta el 30 junio del 2012. Métodos: Un total de 44 pacientes con ulcera activa que cumplieron criterios de selección ingresaron al estudio, correspondientes a 48 extremidades con clasificación CEAP (C6), los pacientes fueron a aleatorizados a manejo convencional (control) o con manejo adicional de oclusión endoluminal con espuma eco-guiada. El objetivo principal fue el cierre de la ulcera a las 24 semanas. Resultados: La Curación de la ulcera a las 24 semanas de la aleatorización fue de 20 (83.3%) extremidades del grupo de oclusión endoluminal con espuma eco-guiada Vs 3(12.5%) para el grupo de control P: 0.0005 Discusión: Las tasas de curación de la ulcera luego de la oclusión endoluminal con espuma eco-guiada es muy superior al manejo convencional con curaciones y vendaje no compresivo, las tasa de curación son tan altas como las reportadas con sistemas de alta compresión y cirugía a las 24 semanas. La oclusión endoluminal eco-guiada es segura, mínimamente invasiva y clínicamente efectiva.
Resumo:
In this paper, we consider the symmetric Gaussian and L-Gaussian quadrature rules associated with twin periodic recurrence relations with possible variations in the initial coefficient. We show that the weights of the associated Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 4. We also show that the weights of the associated L-Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 5. Special cases of these quadrature rules are given. Finally, an easy to implement procedure for the evaluation of the nodes is described.