982 resultados para Three Body Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EDROMO is a special perturbation method for the propagation of elliptical orbits in the perturbed two-body problem. The state vector consists of a time-element and seven spatial elements, and the independent variable is a generalized eccentric anomaly introduced through a Sundman time transformation. The key role in the derivation of the method is played by an intermediate reference frame which enjoys the property of remaining fixed in space as long as perturbations are absent. Three elements of EDROMO characterize the dynamics in the orbital frame and its orientation with respect to the intermediate frame, and the Euler parameters associated to the intermediate frame represent the other four spatial elements. The performance of EDromo has been analyzed by considering some typical problems in astrodynamics. In almost all our tests the method is the best among other popular formulations based on elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions produced by the He3 bombardment of the He3 have been investigated for bombarding energies from 1 to 20 MeV using a tandem Van de Graaff accelerator. Proton spectra from the three-body reaction He3(He3, 2p)He4 have been measured with a counter telescope at 13 angles for 9 bombarding energies between 3 and 18 MeV. The results are compared with a model for the reaction which includes a strong p-He4 final-state interaction. Alpha-particle spectra have been obtained at 12 and 18 MeV for forward angles with a magnetic spectrometer. These spectra indicate a strongly forward-peaked mechanism involving the 1S0 p-p interaction in addition to the p-He4 interaction. Measurements of p-He4 and p-p coincidence spectra at 10 MeV confirm these features of the reaction mechanism. Deuteron spectra from the reaction of He3(He3, d)pHe3 have been measured at 18 MeV. A triton spectrum from the reaction He3(He3, t)3p at 20 MeV and 40 is interpreted in terms of a sequential decay through an excited state of the alpha particle at 20.0 MeV. No effects are observed which would indicate an interaction in the residual (3p) system. Below 3 MeV the He3(He3, 2p)He4 reaction mechanism is observed to be changing and further measurements are suggested in view of the importance of this reaction in stellar interiors.