939 resultados para Thoracoscopic scoliosis correction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Endoscopic anterior scoliosis correction has been employed recently as a less invasive and level-sparing approach compared with open surgical techniques. We have previously demonstrated that during the two-year post-operative period, there was a mean loss of rib hump correction by 1.4 degrees. The purpose of this study was to determine whether intra- or inter-vertebral rotational deformity during the post-operative period could account for the loss of rib hump correction. Materials and Methods. Ten consecutive patients diagnosed with adolescent idiopathic scoliosis were treated with an endoscopic anterior scoliosis correction. Low-dose computed tomography scans of the instrumented segment were obtained post-operatively at 6 and 24 months following institutional ethical approval and patient consent. Three-dimensional multi-planar reconstruction software (Osirix Imaging Software, Pixmeo, Switzerland) was used to create axial slices of each vertebral level, corrected in both coronal and sagittal planes. Vertebral rotation was measured using Ho’s method for every available superior and inferior endplate at 6 and 24 months. Positive changes in rotation indicate a reduction and improvement in vertebral rotation. Intra-observer variability analysis was performed on a subgroup of images. Results. Mean change in rotation for vertebral endplates between 6 and 24 months post-operatively was -0.26˚ (range -3.5 to 4.9˚) within the fused segment and +1.26˚ (range -7.2 to 15.1˚) for the un-instrumented vertebrae above and below the fusion. Mean change in clinically measured rib hump for the 10 patients was -1.6˚ (range -3 to 0˚). The small change in rotation within the fused segment accounts for only 16.5% of the change in rib hump measured clinically whereas the change in rotation between the un-instrumented vertebrae above and below the construct accounts for 78.8%. There was no clear association between rib hump recurrence and intra- or inter-vertebral rotation in individual patients. Intra-rater variability was ± 3˚. Conclusions. Intra- and inter-vertebral rotation continues post-operatively both within the instrumented and un-instrumented segments of the immature spine. Rotation between the un-instrumented vertebrae above and below the fusion was +1.26˚, suggesting that the un-instrumented vertebrae improved and de-rotated slightly after surgery. This may play a role in rib hump recurrence, however this remains clinically insignificant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Increasing health care costs, limited resources and increased demand makes cost effective and cost-efficient delivery of Adolescent Idiopathic Scoliosis (AIS) management paramount. Rising implant costs in deformity correction surgery have prompted analysis of whether high implant densities are justified. The objective of this study was to analyse the costs of thoracoscopic scoliosis surgery, comparing initial learning curve costs with those of the established technique and to the costs involved in posterior instrumented fusion from the literature. METHODS: 189 consecutive cases from April 2000 to July 2011 were assessed with a minimum of 2 years follow-up. Information was gathered from a prospective database covering perioperative factors, clinical and radiological outcomes, complications and patient reported outcomes. The patients were divided into three groups to allow comparison; 1. A learning curve cohort, 2. An intermediate cohort and 3. A third cohort of patients, using our established technique. Hospital finance records and implant manufacturer figures were corrected to 2013 costs. A literature review of AIS management costs and implant density in similar curve types was performed. RESULTS: The mean pre-op Cobb angle was 53°(95%CI 0.4) and was corrected postop to mean 22.9°(CI 0.4). The overall complication rate was 20.6%, primarily in the first cohort, with a rate of 5.6% in the third cohort. The average total costs were $46,732, operating room costs of $10,301 (22.0%) and ICU costs of $4620 (9.8%). The mean number of screws placed was 7.1 (CI 0.04) with a single rod used for each case giving average implant costs of $14,004 (29.9%). Comparison of the three groups revealed higher implant costs as the technique evolved to that in use today, from $13,049 in Group 1 to $14577 in Group 3 (P<0.001). Conversely operating room costs reduced from $10,621 in Group 1 to $7573 (P<0.001) in Group 3. ICU stay was reduced from an average of 1.2 to 0 days. In-patient stay was significantly (P=0.006) lower in Groups 2 and 3 (5.4 days) than Group 1 (5.9 days) (i.e. a reduction in cost of approximately $6,140). CONCLUSIONS: The evolution of our thoracoscopic anterior scoliosis correction has resulted in an increase in the number of levels fused and reduction in complication rate. Implant costs have risen as a result, however, there has been a concurrent decrease in those costs generated by operating room use, ICU and in-patient stay with increasing experience. Literature review of equivalent curve types treated posteriorly shows similar perioperative factors but higher implant density, 69-83% compared to the 50% in this study. Thoracoscopic Scoliosis surgery presents a low density, reliable, efficient and effective option for selected curves. A cost analysis of Thoracoscopic Scoliosis Surgery using financial records and a prospectively collected database of all patients since 2000, demonstrating a clear cost advantage compared to equivalent posterior instrumentation and fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In endoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone- morphogenetic-protein alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent endoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types. Significantly better rates of fusion occurred in endoscopic anterior instrumented scoliosis correction using femoral allograft compared to autologous rib-heads and iliac crest graft. This may be partly explained by the difficulty obtaining sufficient quantities of autologous graft. Lower fusion rates in the autologous graft group appeared to predispose to rod fracture although the clinical consequence of implant failure is uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thoracoscopic instrumented anterior spinal fusion for adolescent idiopathic scoliosis (AIS) has clinical benefits that include reduced pulmonary morbidity, postoperative pain, and improved cosmesis. However, quantitative data on radiological improvement of vertebral rotation using this method is lacking. This study’s objectives were to measure preoperative and postoperative axial vertebral rotational deformity at the curve apex in endoscopically-treated anterior-instrumented scoliosis patients using CT, and assess the relevance of these findings to clinically measured chest wall rib hump deformity correction. This is the first quantitative CT study to confirm that endoscopic anterior instrumented fusion for AIS substantially improves axial vertebral body rotational deformity at the apex of the curve. The margin of correction of 43% compares favourably with historically published figures of 24% for patients with posterior all-hook-rod constructs. CT measurements correlated significantly to the clinical outcome of rib hump deformity correction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Fusionless scoliosis surgery is an early-stage treatment for idiopathic scoliosis which claims potential advantages over current fusion-based surgical procedures. Anterior vertebral stapling using a shape memory alloy staple is one such approach. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The purpose of this study was to investigate the biomechanical consequences of staple insertion in the anterior thoracic spine, using in vitro experiments on an immature bovine model. Methods: Individual calf spine thoracic motion segments were tested in flexion, extension, lateral bending and axial rotation. Changes in motion segment rotational stiffness following staple insertion were measured on a series of 14 specimens. Strain gauges were attached to three of the staples in the series to measure forces transmitted through the staple during loading. A micro-CT scan of a single specimen was performed after loading to qualitatively examine damage to the vertebral bone caused by the staple. Findings: Small but statistically significant decreases in bending stiffness occurred in flexion,extension, lateral bending away from the staple, and axial rotation away from the staple. Each strain-gauged staple showed a baseline compressive loading following insertion which was seen to gradually decrease during testing. Post-test micro-CT showed substantial bone and growth plate damage near the staple. Interpretation: Based on our findings it is possible that growth modulation following staple insertion is due to tissue damage rather than sustained mechanical compression of the motion segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 24 months after thoracoscopic anterior scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) occurrence of post-operative implant failure, and (v) lateral position of the fusion mass in the intervertebral disc space. We propose that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 2yrs after thoracoscopic surgery, and to explore the relationship between fusion scores and rod diameter, graft type, fusion level, implant failure, and lateral position in the disc space. This study suggests that moderate fusion scores secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a complex 3D deformity of the spine, which may require surgical correction in severe cases. Computer models of the spine provide a potentially powerful tool to virtually ‘test’ various surgical scenarios prior to surgery. Using patient-specific computer models of seven AIS patients who had undergone a single rod anterior procedure, we have recently found that the majority of the deformity correction occurs at the apical joint or the joint immediately cephalic to the apex. In the current paper, we investigate the biomechanics of the apical joint for these patients using clinically measured intra-operative compressive forces applied during implant placement. The aim of this study is to determine a relationship between the compressive joint force applied intra-operatively and the achievable deformity correction at the apical joint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS), which aims of harness potential growth in order to correct spinal deformity. The purpose of this study was to compare the in-vitro biomechanical response of two different dual rod designs under axial rotation loading. Methods Six porcine spines were dissected into seven level thoracolumbar multi-segmental units. Each specimen was mounted and tested in a biaxial Instron machine, undergoing nondestructive left/right axial rotation to peak moments of 4Nm at a constant rotation rate of 8deg.s-1. A motion tracking system (Optotrak) measured 3D displacements of individual vertebrae. Each spine was tested in an un-instrumented state first and then with appropriately sized semi-constrained growing rods and ‘rigid’ rods in alternating sequence. Range of motion, neutral zone size and stiffness were calculated from the moment-rotation curves and intervertebral ranges of motion were calculated from Optotrak data. Findings Irrespective of test sequence, rigid rods showed significantly reduction of total rotation across all instrumented levels (with increased stiffness) whilst semi-constrained rods exhibited similar rotation behavior to the un-instrumented (P<0.05). An 11% and 8% increase in stiffness for left and right axial rotation respectively and 15% reduction in total range of motion was recorded with dual rigid rods compared with semi-constrained rods. Interpretation Based on these findings, the semi-constrained growing rods do not increase axial rotation stiffness compared with un-instrumented spines. This is thought to provide a more physiological environment for the growing spine compared to dual rigid rod constructs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Paediatric Spine Research group was formed in 2002 to perform high quality research into the prevention and management of spinal deformity, with an emphasis on scoliosis. The group has successfully built collaborative bridges between the scientific and research expertise at QUT, and the clinical skills and experience of the spinal orthopaedic surgeons at the Mater Children’s Hospital in Brisbane. Clinical and biomechanical research is now possible as a result of the development of detailed databases of patients who have innovative and unique surgical interventions for spinal deformity such as thoracoscopic scoliosis correction, thoracoscopic staple insertion for juvenile idiopathic scoliosis and minimally invasive growing rods. The Mater in Brisbane provides these unique datasets of spinal deformity surgery patients, whose procedures are not being performed anywhere else in the Southern Hemisphere. The most detailed is a database of thoracoscopic scoliosis correction surgery which now contains 180 patients with electronic collections of X-Rays, photographs and patient questionnaires. With ethics approval, a subset of these patients has had CT scans, and a further subset have had MRI scans with and without a compressive load to simulate the erect standing position. This database has to date contributed to 17 international refereed journal papers, a further 7 journal papers either under review or in final preparation, 53 national conference presentations and 35 international conference presentations. Major findings from selected journal publications will be presented. It is anticipated that as the surgical databases grow they will continue to provide invaluable clinical data which will feed into clinically relevant projects driven by both medical and engineering researchers whose findings will benefit spinal deformity patients and scientific knowledge worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Analysis of a case series of 24 Lenke 1C adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior scoliosis correction. Objective. To report the behaviour of the compensatory lumbar curve in a group of Lenke IC AIS patients following thoracoscopic anterior scoliosis correction, and to compare the results of this study with previously published data. Summary of Background Data. Several prior studies have reported spontaneous lumbar curve correction for both anterior and posterior selective fusion in Lenke 1C/King-Moe II patients; however to our knowledge no previous studies have reported outcomes of thoracoscopic anterior correction for this curve type. Methods. All AIS patients with a curve classification of Lenke 1C and a minimum of 24 months follow-up were retrieved from a consecutive series of 190 AIS patients who underwent thoracoscopic anterior instrumented fusion. Cobb angles of the major curve, instrumented levels, compensatory lumbar curve, and T5-T12 kyphosis were recorded, as well as coronal spinal balance, T1 tilt angle and shoulder balance. All radiographic parameters were measured before surgery and at 2, 6, 12 and 24 months after surgery. Results. Twenty-four female patients with right thoracic curves had a mean thoracic Cobb angle of 53.0° before surgery, decreasing to 24.9° two years after surgery. The mean lumbar compensatory Cobb angle was 43.5° before surgery, spontaneously correcting to 25.4° two years after surgery, indicating balance between the thoracic and lumbar scoliotic curves. The lumbar correction achieved (41.8%) compares favourably to previous studies. Conclusions. Selective thoracoscopic anterior fusion allows spontaneous lumbar curve correction and achieves coronal balance of main thoracic and compensatory lumbar curves, good cosmesis and patient satisfaction. Correction and balance are maintained 24 months after surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal thoracic kyphosis Cobb angle for T5-T12 is most commonly reported as a range of 20-40º [1]. Patients with adolescent idiopathic scoliosis (AIS) exhibit a reduced thoracic kyphosis or hypokyphosis [2] accompanying the coronal and rotary distortion components. As a result, surgical restoration of the thoracic kyphosis while maintaining lumbar lordosis and overall sagittal balance is a critical aspect of achieving good clinical outcomes in AIS patients. Previous studies report an increase in thoracic kyphosis after anterior surgical approaches [3] and a flattening of sagittal contours following posterior approaches [4]. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality and are the subject of analysis in this study.