959 resultados para Thoracic Wall
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and cross-sectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Diottix(r) was calibrated at 25 Hz to achieve the frequency indicated in literature as being effective to mobilize the airways secretions. However, the amplitude and frequency of the waves generated by the equipment in different regions of the chest still need to be investigated. The objective of this study was to analyze the frequency and amplitude of waves generated by Diottix(r) in chests of healthy subjects. Diottix(r) was used in the anterior and posterior regions of the chest. The mechanical waves were captured using stethoscopes connected to electret microphones, which were connected to a digital oscilloscope. Frequency and amplitude data were recorded by the stethoscope, positioned in six points in the anterior region and six in the posterior region of the chest, following the positions commonly used in pulmonary auscultation. Signals were recorded and transferred to a computer with software for their analysis. The frequency of waves did not present a significant change (from 24.9 to 26.4 Hz). The wave amplitude in the anterior versus the posterior region in each area of the lung, the upper, middle and lower, had differences. Diottix(r) produces frequencies in the chest according to the calibrated; thus, it can be a complementary resource to bronchial hygiene maneuvers. The amplitudes of waves seem to be affected by other structures like bone parts and heart.
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and crosssectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall
Resumo:
RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (O,SmL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomies with a metallic cannula (14 gauge).The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups:(i) closed chest,(ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mUs). lnsufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a,b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.
Resumo:
RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (0,5mL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomized with a metallic cannula (14 gauge). The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups: (i) closed chest, (ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mL/s). Insufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a, b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Table 1: Mean and Standard Deviation of parameters obtained for each protocol. Protocol: Closed Chest – a (mL) -0.35±0.33; b (mL) 13.93±0.89; c (cm H2O) 21.28±2.37; d (cm H2O) 6.17±0.84; r²** (%) 99.4±0.14; Initial Elastance* (cm H2)/mL) 12.72±6.66; Weight (g) 232.33±5.72. Open Chest - a (mL) 0.01±0.28; b (mL) 14.79±0.54; c (cm H2O) 19.47±1.41; d (cm H2O) 3.50±0.28; r²** (%) 98.8±0.34; Initial Elastance* (cm H2)/mL) 28.68±2.36; Weight (g) 217.33±7.97. Isolated Lung - a (mL) -0.09±0.46; b (mL) 14.22±0.75; c (cm H2O) 21.76±1.43; d (cm H2O) 4.24±0.50; r²** (%) 98.9±0.19; Initial Elastance* (cm H2)/mL) 7.13±8.85; Weight (g) 224.33±16.66. * Elastance measures in the 0-0,1 mL range. ** Goodness of sigmoid fit versus measured data Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.
Resumo:
Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
Acute dissection and rupture of aortic aneurysms comprise for 1-2% of all deaths in industrialized countries. Dilation of the aorta is caused by a multitude of mechanisms including inherited connective tissue disorders such as Marfan syndrome (MFS). MFS is one of the most common inherited connective tissue disorders affecting 1 in 5000 individuals. Although the phenotype of MFS can be quite variable, aneurysmal dilation of the aortic root and consecutive acute aortic dissection is the leading cause of death in this patient population. Over the past years it has been shown that a comprehensive understanding of this disorder provides greater understanding of vascular wall biology and identifies pathways relevant to aortic aneurysms and dissection in general. The current review discusses the surgical management of patients with MFS with a special emphasis on indications for surgery in this complex group of patients.
Resumo:
A 8-year-old boy showed a traumatic ventricular septal rupture following a blunt chest trauma, and was scheduled for elective catheter closure. Two weeks later, a follow-up echocardiogram revealed a pseudoaneurysm of the anterior wall of the left ventricle. Because of the apical location of the VSD, it was decided to proceed with transcatheter occlusion. After successful VSD closure, the patient was taken to the operation room for surgical repair of the left ventricular pseudoaneurysm. Symptoms and signs seen in patients with ventricular pseudoaneurysms appear to be discrete and variable, and a high clinical index of suspicion with a very close echocardiographic follow-up is strongly recommended after occurrence of a blunt cardiac trauma. The combined 'hybrid' approach of transcatheter closure of the intraventricular rupture followed by surgical closure of the pseudoaneurysm allows for a less invasive and efficient management of this rare combination of post-traumatic ventricular free wall and septal rupture in a child.
Resumo:
BACKGROUND: The traditional approach to stable blunt thoracic aortic injuries (TAI) is immediate repair, with delayed repair reserved for patients with major associated injuries. In recent years, there has been a trend toward delayed repair, even in low-risk patients. This study evaluates the current practices in the surgical community regarding the timing of aortic repair and its effects on outcomes. METHODS: This was a prospective, observational multicenter study sponsored by the American Association for the Surgery of Trauma. The study included patients with blunt TAI scheduled for aortic repair by open or endovascular procedure. Patients in extremis and those managed without aortic repair were excluded. The data collection included demographics, initial clinical presentation, Injury Severity Scores, type and site of aortic injury, type of aortic repair (open or endovascular repair), and time from injury to aortic repair. The study patients were divided into an early repair (< or = 24 hours) and delayed repair groups (> 24 hours). The outcome variables included survival, ventilator days, intensive care unit (ICU) and hospital lengths of stay, blood transfusions, and complications. The outcomes in the two groups were compared with multivariate analysis after adjusting for age, Glasgow Coma Scale, hypotension, major associated injuries, and type of aortic repair. A second multivariate analysis compared outcomes between early and delayed repair, in patients with and patients without major associated injuries. RESULTS: There were 178 patients with TAI eligible for inclusion and analysis, 109 (61.2%) of which underwent early repair and 69 (38.8%) delayed repair. The two groups had similar epidemiologic, injury severity, and type of repair characteristics. The adjusted mortality was significantly higher in the early repair group (adjusted OR [95% CI] 7.78 [1.69-35.70], adjusted p value = 0.008). The adjusted complication rate was similar in the two groups. However, delayed repair was associated with significantly longer ICU and hospital lengths of stay. Analysis of the 108 patients without major associated injuries, adjusting for age, Glasgow Coma Scale, hypotension, and type of aortic repair, showed that in early repair there was a trend toward higher mortality rate (adjusted OR 9.08 [0.88-93.78], adjusted p value = 0.064) but a significantly lower complication rate (adjusted OR 0.4 [0.18-0.96], adjusted p value 0.040) and shorter ICU stay (adjusted p value = 0.021) than the delayed repair group. A similar analysis of the 68 patients with major associated injuries, showed a strong trend toward higher mortality in the early repair group (adjusted OR 9.39 [0.93-95.18], adjusted p value = 0.058). The complication rate was similar in both groups (adjusted p value = 0.239). CONCLUSIONS: Delayed repair of stable blunt TAI is associated with improved survival, irrespective of the presence or not of major associated injuries. However, delayed repair is associated with a longer length of ICU stay and in the group of patients with no major associated injuries a significantly higher complication rate.
Resumo:
OBJECTIVE: This study sought to characterize the inflammatory infiltrate in ascending thoracic aortic aneurysm in patients with Marfan syndrome, familial thoracic aortic aneurysm, or nonfamilial thoracic aortic aneurysm. BACKGROUND: Thoracic aortic aneurysms are associated with a pathologic lesion termed "medial degeneration," which is described as a noninflammatory lesion. Thoracic aortic aneurysms are a complication of Marfan syndrome and can be inherited in an autosomal dominant manner of familial thoracic aortic aneurysm. METHODS: Full aortic segments were collected from patients undergoing elective repair with Marfan syndrome (n = 5), familial thoracic aortic aneurysm (n = 6), and thoracic aortic aneurysms (n = 9), along with control aortas (n = 5). Immunohistochemistry staining was performed using antibodies directed against markers of lymphocytes and macrophages. Real-time polymerase chain reaction analysis was performed to quantify the expression level of the T-cell receptor beta-chain variable region gene. RESULTS: Immunohistochemistry of thoracic aortic aneurysm aortas demonstrated that the media and adventitia from Marfan syndrome, familial thoracic aortic aneurysm, and sporadic cases had increased numbers of T lymphocytes and macrophages when compared with control aortas. The number of T cells and macrophages in the aortic media of the aneurysm correlated inversely with the patient's age at the time of prophylactic surgical repair of the aorta. T-cell receptor profiling indicated a similar clonal nature of the T cells in the aortic wall in a majority of aneurysms, whether the patient had Marfan syndrome, familial thoracic aortic aneurysm, or sporadic disease. CONCLUSION: These results indicate that the infiltration of inflammatory cells contributes to the pathogenesis of thoracic aortic aneurysms. Superantigen-driven stimulation of T lymphocytes in the aortic tissues of patients with thoracic aortic aneurysms may contribute to the initial immune response.
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.
Resumo:
Thoracic aortic aneurysms leading to aortic dissections (TAAD) are a major cause of morbidity and mortality in the United States. TAAD is a complication of some known genetic disorders, such as Marfan syndrome and Turner syndrome, but the majority of familial cases are not due to a known genetic syndrome. Previous studies by our group have established that nonsyndromic, familial TAAD is inherited in an autosomal dominant manner with decreased penetrance and variable expression. Using one large family with multiple members with TAAD for the genome wide scan, a major locus for familial TAAD was mapped to 5q13–14 (TAAD1). Nine out of 15 families studied were linked to this locus, establishing that TAAD1 was a major locus, and that there was genetic heterogeneity for the condition. Mapping of TAAD2 locus was accomplished using a single large family with multiple members with TAAD not linked to known loci of aneurysm formation. This established a second novel locus for familial TAAD on 3p24–25 (LOD score of 4.3), termed the TAAD2 locus. Two putative loci with suggestive LOD scores were mapped on 4q and 12q through a genome scan carried out using three families. TAAD phenotype in 12 families did not segregate with known loci, indicating further genetic heterogeneity. An STS-tagged BAC based contig was constructed for 7.8Mb and 25Mb critical interval of TAAD1 and TAAD2 respectively and characterized to identify the defective gene. The hypothesis that the defective genes responsible for the TAAD1 and TAAD2 encoded extracellular matrix (ECM) proteins, the major components of the elastic fiber system in the aortic media was tested. Four genes encoding ECM proteins, versican, thrombospondin-3, CRTL1, on TAAD1 and FBLN2 at TAAD2 were sequenced, but no disease-causing mutations were identified. Studies to identify the defective gene are initiated through the positional candidate gene approach using combination of bioinformatics and expression studies. The identification of the TAAD susceptibility genes will allow for presymptomatic diagnosis of individuals at risk for this life threatening disease. The identification of the molecular defects that contribute to TAAD will also further our understanding of the proteins that provide structural integrity to the aortic wall. ^
Resumo:
The cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organization. The development of new diagnostic tools that are practicable and economical to scrutinize the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals up to 54 Hz covering both ballistocardiography (below 20 Hz) and audible heart sounds (20 Hz upward), using a system based on curvature sensors formed from fiber optic long period gratings. This system can visualize the real-time three-dimensional (3-D) mechanical motion of the heart by using the data from the sensing array in conjunction with a bespoke 3-D shape reconstruction algorithm. Visualization is demonstrated by adhering three to four sensors on the outside of the thorax and in close proximity to the apex of the heart; the sensing scheme revealed a complex motion of the heart wall next to the apex region of the heart. The detection scheme is low-cost, portable, easily operated and has the potential for ambulatory applications.
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.