122 resultados para Thiobacillus ferrooxidans


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical fractionation and bioleaching of Mn, At, Zn, Cu and Ti in municipal sewage sludge were investigated using Thiobacillus ferrooxidans as leaching microorganism. As a result of the bacterial activity, ORP increase and pH reduction were observed. Metal solubilization was accomplished only in experimental systems supplemented with energy source (Fe(II)). The solubilization efficiency approached similar to80% for Mn and Zn, 24% for Cu, 10% for At and 0.2% for Ti. The chemical fractionation of Mn, At, Zn, Cu and Ti was investigated using a five-step sequential extraction procedure employing KNO3. KF, Na4P2O7, EDTA and HNO3. The results show that the bioleaching process affected the partitioning of Mn and Zn, increasing its percentage of elution in the KNO3 fraction while reducing it in the KF, Na4P2O7 and EDTA fractions. No significant effect was detected on the partitioning of Cu and Al. However, quantitatively the metals Mn, Zn, Cu and At were extracted with higher efficiency after the bacterial activity. Titanium was unaffected by the bioleaching process in both qualitative and quantitative aspects. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualitative and quantitative oxidation tests of H2S in acid solution were carried out using Thiobacillus ferrooxidans and Thiobacillus thiooxidans species, Experiments were performed using solutions of H2SO4 (pH 2.0) containing H2S in initial concentrations ranging from 5 to 100 ppm. in shake flasks at 150 rpm and 30(circle)C. In these solution, this gas was not very stable and was quickly liberated. However, at low concentration (less than 5 ppm) it becomes stable and could only be removed from solution by oxidation. The results obtained indicated that the presence of either T. ferrooxidans or T. thiooxidans causes a significant reduction in H,S concentration (more than 99%) in relation to the sterile control, No differences in oxidation efficiency between these two species were detected. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution- and solid-phase changes associated with galena (PbS) and sphalerite (ZnS) oxidation by T. ferrooxidans and T. thiooxidans, were determined. In experiments with galena, anglesite (PbSO4) was detected as a solid-phase product in biotic and abiotic experiments. In T. ferrooxidans cultures supplemented with FeSO4, jarosite [MFe3 (SO4)(2) (OH)(6)] was also detected as a new solid phase product, whereas SO was not detected in the residues. In sphalerite experiments, minor amounts of SO accumulated in FeSO4-amended sphalerite media with or without T. ferrooxidans or T. thiooxidans. Jarosite was only detected in T. ferrooxidans culture with FeSO4. By comparison with T. thiooxidans, T. ferrooxidans was more efficient in the oxidation of galena and sphalerite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was optimized and used for assessing genomic variability among eight Thiobacillus ferrooxidans strains. RAPD fingerprints presented variation for the thirty primers used, giving a total of 269 polymorphic bands. Similarity coefficients between the strains were calculated, and UPGMA cluster analysis was used to generate a dendrogram showing relationships among them. Most primers divided T. ferrooxidans strains in two distinct groups - Group 1: S, SSP, V3, AMF and Group 2: CMV, FG-460, I-35, LR. We observed that the T. ferrooxidans strains used in this work have a high degree of genomic diversity and that RAPD is a powerful method to differentiate them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of applied DC potentials on the activity and growth of Thiobacillus ferrooxidans, as well as on the dissolution behaviour of some base metal sulphides is discussed with reference to bioleaching. Selective bioleaching of zinc from sphalerite could be achieved under an applied potential of −500 mV (saturated calomel electrode) from binary mineral mixtures containing the zinc mineral and chalcopyrite or pyrite. On the other hand, bioleaching of pyrite and chalcopyrite was found to be enhanced under positive potentials of +400 mV and +600 mV, respectively. Probable mechanisms in the electrobioleaching of sulphides are examined with respect to galvanic, microbiological and applied potential effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioleaching of base metal sulfides, such as pyrite, chalcopyrite, and sphalerite, under the influence of applied direct current (DC) potentials is discussed. Contributions toward mineral dissolution from three effects, namely, galvanic, applied potential, and microbiological, are analyzed and compared. Sphalerite could be selectively bioleached in the presence of Thiobacillus ferrooxidans under an applied potential of -500 mV (SCE) from mixed sulfides containing sphalerite, pyrite, and chalcopyrite. Bacterial activity and growth were found to be promoted under electrobioleaching conditions. Probable mechanisms involved in the bioleaching of different sulfides under positive and negative applied potentials are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through the application of negative reduction potential significant reduction of manganic and iron oxides in the ocean manganese nodules can be achieved, liberating the occluded copper, nickel and cobalt for easy dissolution in an acid medium. Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Thiobacillus ferrooxidans and Thiobacillus thiooxidans at the above negative applied dc potentials resulted in significant dissolution of copper, nickel and cobalt in 1 M H2SO4. The role of galvanic interactions in the bioleaching of ocean manganese nodules in the presence of T thiooxidans is also discussed, (C) 2002 Published by Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

instead of using chemical-reducing agents to facilitate the reduction and dissolution of manganese and iron oxide in the ocean nodule, electrochemical reduction based on two approaches, namely, cathodic polarization and galvanic interaction, can also be considered as attractive alternatives. Galvanic leaching of ocean nodules in the presence of pyrite and pyrolusite for complete recovery of Cu, Ni and Co has been discussed. The key for successful and efficient dissolution of copper, nickel and cobalt from ocean nodules depends on prior reduction of the manganese and ferric oxides with which the above valuable nonferrous metals are interlocked. Polarization studies using a slurry electrode system indicated that maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 mV (SCE) and -1400 mV (SCE). The present work is also relevant to galvanic bioleaching of ocean nodules using autotrophic microorganisms, such as Thiobacillus ferrooxidans and T thiooxidans, which resulted in significant dissolution of copper, nickel and cobalt at the expense of microbiologically generated acids. Various electrochemical and biochemical mechanisms are outlined and the electroleaching and galvanic processes so developed are shown to yield almost complete dissolution of all metal values. (C) 2002 Elsevier Science B.V. All rights reserved.