993 resultados para Thickness reduction rolling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anomalous photoinduced transformations in amorphous Ge-based chalcogenide thin films are established as being due to photochemical modification of the surfaces, by photoemission studies. Mass measurements indicate that the giant thickness reduction on irradiation is predominantly due to the loss of material as a result of photogenerated volatile high vapor pressure oxide fractions on the surface. This extrinsic contribution contradicts the models of the phenomenon proposed so far, which are based purely on intrinsic structural transformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mg-3Al-0.5Mn-0.5Zn-1MM alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and then hot-rolled at 673 K with total thickness reduction of 65%. Microstructure and mechanical properties of the as-cast and hot-rolled samples were investigated. The results showed that the as-cast sample mainly consisted of alpha-Mg, beta-Mg17Al12, Al10Ce2Mn7, and Al11RE3 (RE = La and Ce) phases. The average grain size of the sample homogenized at 673 K was about 240 gm, and it was greatly refined to about 7 mu m by dynamic recrystallization for the hot-rolled sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate the dominance of a particular oxygen transport limiting step (e.g., bulk-diffusion or surface reaction) within each of these membranes. At 900 °C and 100 mL min–1 helium gas sweep rate, the oxygen fluxes for disk, conventional hollow fiber, modified hollow fiber, Ag-deposited modified hollow fiber, and Pt-deposited modified hollow fiber membranes are 0.10, 0.33, 0.84, 1.42, and 2.62 mL min–1 cm–2, respectively, denoting enhanced performance in this sequential order. More than 300% enhancement of fluxes is evidenced by modifying the geometry from disk to conventional hollow fiber. This is attributed to the thickness reduction from 1 mm to 0.3 mm, thus implying bulk-diffusion and surface reaction as the jointly limiting transport step for this disk membrane. In contrast to a conventional hollow fiber that has a sandwich cross-sectional structure (e.g. dense center layer sandwiched by two finger-like layers) as well as dense outer and inner circumference surfaces, the modified hollow fiber has only one dense layer in its outer circumference surface with finger-like porous layer extending all the way from outer cross-sectional part to the inner cross-sectional part. This microstructural difference, in turn, provides substantial reduction of membrane thickness and enlarges surface reaction area for modified hollow fiber (relative to conventional hollow fiber), both of which contributes to the reduced bulk-diffusion and surface reaction resistance; evidenced by almost 250% oxygen flux enhancement. To enhance the performance even further, catalyst (e.g., Ag or Pt) deposition on the outer circumference surface of modified hollow fiber can be utilized to reduce its dominating surface reaction resistance. While both catalysts increase the oxygen fluxes, Pt reveals itself as the better candidate relative to Ag due to melting-induced aggregation and growth of Ag at 950 °C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A engenharia é a ciência que transforma os conhecimentos das disciplinas básicas aplicadas a fatos reais. Nosso mundo está rodeado por essas realizações da engenharia, e é necessário que as pessoas se sintam confortáveis e seguras nas mesmas. Assim, a segurança se torna um fator importante que deve ser considerado em qualquer projeto. Na engenharia naval, um apropriado nível de segurança e, em consequência, um correto desenho estrutural é baseado, atualmente, em estudos determinísticos com o objetivo de obter estruturas capazes de suportar o pior cenário possível de solicitações durante um período de tempo determinado. A maior parte das solicitações na estrutura de um navio se deve à ação da natureza (ventos, ondas, correnteza e tempestades), ou, ainda, aos erros cometidos por humanos (explosões internas, explosões externas e colisões). Devido à aleatoriedade destes eventos, a confiabilidade estrutural de um navio deveria ser considerada como um problema estocástico sob condições ambientais bem caracterizadas. A metodologia probabilística, baseada em estatística e incertezas, oferece uma melhor perspectiva dos fenômenos reais que acontecem na estrutura dos navios. Esta pesquisa tem como objetivo apresentar resultados de confiabilidade estrutural em projetos e planejamento da manutenção para a chapa do fundo dos cascos dos navios, as quais são submetidas a esforços variáveis pela ação das ondas do mar e da corrosão. Foram estudados modelos estatísticos para a avaliação da estrutura da viga-navio e para o detalhe estrutural da chapa do fundo. Na avaliação da estrutura da viga-navio, o modelo desenvolvido consiste em determinar as probabilidades de ocorrência das solicitações na estrutura, considerando a deterioração por corrosão, com base numa investigação estatística da variação dos esforços em função das ondas e a deterioração em função de uma taxa de corrosão padrão recomendada pela DET NORSKE VERITAS (DNV). A abordagem para avaliação da confiabilidade dependente do tempo é desenvolvida com base nas curvas de resistências e solicitações (R-S) determinadas pela utilização do método de Monte Carlo. Uma variação estatística de longo prazo das adversidades é determinada pelo estudo estatístico de ondas em longo prazo e ajustada por uma distribuição com base numa vida de projeto conhecida. Constam no trabalho resultados da variação da confiabilidade ao longo do tempo de um navio petroleiro. O caso de estudo foi simplificado para facilitar a obtenção de dados, com o objetivo de corroborar a metodologia desenvolvida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-layered materials have been made from Cu-Fe with approximately equal volume fractions using the Accumulated Roll Bonding (ARB) technique with less than 1 μm thickness of the individual layers. The so-obtained multi-layers have been subjected to deformation by cold rolling to 25, 50, 75, 87 and 93% reduction in thickness. A detailed characterization has been carried out using X-ray diffraction (line profile analysis and texture measurement) and electron (scanning and transmission) microscopy. It has been found that Fe layers are disintegrated whereas Cu retains its continuity within a layer. Microstructural Characterization from X-Ray Line profile Analysis (XRDLPA) through Variance Method reveals that large amount of strain is initially carried by Cu layers during deformation. In the Cu-Fe layer, the texture is comparatively weaker in Cu layer and strong in Fe layers. Brass Component increases up to 75% reduction and then decreases, while the ratio of Cu/S and Bs/S remains almost constant through out the deformation. After 50% reduction, dynamic recovery is predominant as indicated by the increase in the amount of low angle grain boundaries and decrease in dislocation density. The presence of R component indicates continuous dynamic recovery and recrystallization (CDRR) at the advanced stage of deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A model of lubricated cold strip rolling (1, 2) is extended to the thin foil regime. The model considers the evolution of asperity geometry and lubricant pressure through the bite, treating the strip using a conventional slab model. The elastic deflections of the rolls are coupled into the problem using an elastic finite element model. Friction between the roll and the asperities on the strip is modelled using the Coulomb and Tresca friction factor approaches. The shear stress in the Coulomb friction model is limited to the shear yield stress of the strip. A novel modification to these standard friction laws is used to mimic slipping friction in the reduction regions and sticking friction in a central neutral zone. The model is able to reproduce the sticking and slipping zones predicted by Fleck et al. (3). The variation of rolling load, lubricant film thickness and asperity contact area with rolling speed is examined, for conditions typical of rolling aluminium foil from a thickness of 50 to 25 μm. T he contact area and hence friction rises as the speed drops, leading to a large increase in rolling load. This increase is considerably more marked using Coulomb friction as compared with the friction factor approach. Forward slip increases markedly as the speed falls and a significant sticking region develops.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The improvements in thickness accuracy of a steel strip produced by a tandem cold-roIling mill are of substantial interest to the steel industry. In this paper, we designed a direct model-reference adaptive control (MRAC)  scheme that exploits the natural level of excitation existing in the closed-loop with a dynamically constructed cascade-correlation neural network (CCNN) as a controller for cold roIling mill thickness control. Simulation results show that the combination of a such a direct MRAC scheme and the dynamically constructed CCNN significantly improves the thickness accuracy in the presence of disturbances and noise in comparison with to the conventional PID controllers.