77 resultados para Thermometers.
Resumo:
Number lines are part of our everyday life (e.g., thermometers, kitchen scales) and are frequently used in primary mathematics as instructional aids, in texts and for assessment purposes on mathematics tests. There are two major types of number lines; structured number lines, which are the focus of this paper, and empty number lines. Structured number lines represent mathematical information by the placement of marks on a horizontal or vertical line which has been marked into proportional segments (Figure 1). Empty number lines are blank lines which students can use for calculations (Figure 2) and are not discussed further here (see van den Heuvel-Panhuizen, 2008, on the role of empty number lines). In this article, we will focus on how students’ knowledge of the structured number line develops and how they become successful users of this mathematical tool.
Resumo:
Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.
Resumo:
A simple four-terminal AC bridge is described which can be used with germanium resistance thermometers down to 1 K. The special features of the bridge are its ease of fabrication and extremely low cost.
Resumo:
This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide, cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure thermometers and thermostatic expansion valves.
Resumo:
An investigation has been made of the structure of the motion above a heated plate inclined at a small angle (about 10°) to the horizontal. The turbulence is considered in terms of the similarities to and differences from the motion above an exactly horizontal surface. One effect of inclination is, of course, that there is also a mean motion. Accurate data on the mean temperature field and the intensity of the temperature fluctuations have been obtained with platinum resistance thermometers, the signals being processed electronically. More approximate information on the velocity field has been obtained with quartz fibre anemometers. These results have been supplemented qualitatively by simultaneous observations of the temperature and velocity fluctuations and also by smoke experiments. The principal features of the flow inferred from these observations are as follows. The heat transfer and the mean temperature field are not much altered by the inclination, though small, not very systematic, variations may result from the complexities of the velocity field. This supports the view that the mean temperature field is largely governed by the large-scale motions. The temperature fluctuations show a systematic variation with distance from the lower edge and resemble those above a horizontal plate when this distance is large. The largescale motions of the turbulence start close to the lower edge, but the smaller eddies do not attain full intensity until the air has moved some distance up the plate. The mean velocity receives a sizable contribution from a ‘through-flow’ between the side-walls. Superimposed on this are developments that show that the momentum transfer processes are complex and certainly not capable of representation by any simple theory such as an eddy viscosity. On the lower part of the plate there is surprisingly large acceleration, but further up the mixing action of the small eddies has a decelerating effect.
Resumo:
A temperature-controlled pool boiling (TCPB) device was developed to perform pool boiling heat transfer studies at both normal gravity on Earth and microgravity in the drop tower Beijing and aboard a Chinese recovery satellite. Two platinum wires of 60 ?m in diameter were simultaneously used as heaters and thermometers. The lengths were 30 mm and 40 mm, respectively. The ends of wires were soldered with copper poles to provide low resistance paths for the electric current. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit similar to that used in constant-temperature hot-wire anemometry. The fluid was R113 at 0.1 Mpa and subcooled by 30 ?C nominally for all cases. The results of the experiments at normal gravity were presented. Four modes, namely single-phase convection, nucleate boiling, transition two-mode boiling, and film boiling were observed. A few data obtained from several preliminary experiments at microgravity in the drop tower Beijing were also presented. A slight increase of the heat flux was obtained.
Resumo:
Resumo:
Os Staphylococcus coagulase-negativos (SCN) são encontrados na pele e mucosas de seres humanos e outros animais, já que algumas espécies são parte constituinte da microbiota normal destes mesmos sítios, e podem constituir um reservatório para SCN. A espécie Staphylococcus epidermidis, é reconhecida como grande oportunista e agente de graves infecções nosocomiais e comunitárias, além de associado com infecções em pacientes submetidos a implantes com dispositivos médicos, e a espécie Staphyloccus haemolyticus é a segunda espécie mais isolada de hemoculturas humanas, sendo uma das espécies que apresenta elevada resistência aos antimicrobianos. O presente estudo teve como objetivo principal investigar a presença de SCN em fômites (estetoscópios, termômetros e esfigmomanômetros) no ambiente hospitalar, identificar as espécies S. haemolyticus e S. epidermidis e correlacionar seus perfis de resistência aos antimicrobianos com a capacidade de produção de biofilme. A técnica de multiplex-mPCR foi empregada na determinação das espécies e a fenotipagem foi realizada pelos testes fenotípicos convencionais. Os perfis de resistência aos antimicrobianos foram verificados através do teste de disco-difusão, determinação da CIM (oxacilina e vancomicina), determinação da CBM e presença do gene mecA. A capacidade de produção de biofilme foi investigada pelos testes do Ágar Vermelho do Congo e ensaios de aderência em superfícies abióticas (poliestireno e vidro) na presença e ausência de oxacilina e vancomicina, além da PCR para o gene icaAD. Os resultados demonstraram que pelos testes bioquímicos convencionais, a espécie mais encontrada foi S. epidermidis (43,5%). Após a confirmação pela técnica de PCR, 29 amostras (82%) foram identificadas como S. epidermidis, e 6 amostras (18%) foram identificadas como S. haemolyticus. Todas as amostras foram multirresistentes, oxacilina resistentes e vancomicina sensíveis, sendo que apenas 5 amostras S. epidermidis (17,2%) foram tolerantes a oxacilina. A presença do gene mecA foi detectada em 71,4% das amostras. Apesar da maioria das amostras ter apresentado capacidade de produzir slime e/ou biofilme não foi observada total correlação com a presença do gene icaAD enfatizando a natureza multifatorial da produção de biofilme. As amostras aderiram melhor ao esfigmomanômetro, e também, neste fômites, foi encontrado a maior porcentagem de amostras positivas para a produção de slime. Para aderência ao vidro e aderência ao poliestireno não foi encontrada correlação com os fômites. Foram isoladas amostras S. epidermidis de todos os sítios hospitalares estudados e S. haemolyticus só não foi encontrado em Enfermaria de Clínica Médica. Em relação aos fômites, S. epidermidis foi encontrado em todos os fômites estudados, e S. haemolyticus, apenas foi encontrado em esfigmomanômetro e em outros fômites. Os fômites estão servindo como fontes de transmissão e disseminação de micro-organismos, sendo necessário maiores estudos a respeito.
Resumo:
A winch suitable for lowering and hauling up of costly hydrographic apparatus like Bathy-thermograph, Reversible thermometers, Current flow meters etc., was designed, fabricated and tested at Off Shore Fishing Station, Cochin. The first model of this winch is in use on board the motor vessel Pratap, a Tuna Long linger.
Resumo:
There is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 degrees from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3-m-diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [eta(h) (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: eta(h) = 10 + 25exp(-0.17 u), where u is wind speed at 2 m height (m s(-1)). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month-long periods at both sites, about 75% of canopy temperature observations were within 0.5 degrees C of the set-point temperature differences between heated and reference plots. Electrical power consumption per 3-m-diameter plot averaged 58 and 80 kW h day(-1) for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 degrees C daytime, 1.7 degrees C night) than Cheyenne (1.5 degrees C daytime, 3.0 degrees C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free-air-controlled enhancement (T-FACE) system for warming ecosystem field plots.
Resumo:
Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.
Resumo:
There is little agreement as to the most appropriate thermometer, the anatomical site to carry out temperature measurement in children with cancer, or the type of thermometer preferred by the patients. The authors carried out this study to assess temperature measurement in children with cancer who were admitted for febrile episodes. The body temperatures of children with cancer who were admitted consecutively between January and October 2005 to the paediatric department because of febrile episodes were measured on admission and over the next 24–36 hours using an electronic thermometer sublingually as the standard reference site. These measurements were compared with those obtained with two ear-based thermometers, a forehead thermometer, and from the axilla (representing current practice). The parents were asked about the type of thermometer they used at home and the children were asked about the type of thermometer they preferred. There were 34 admissions during this period, of which 19 (56%) were confirmed as febrile. Altogether, 108 sets of temperature measurements were obtained, producing a total of 540 measurements from these admissions. Measurements with the two ear-based thermometers in febrile children achieved higher sensitivity than that with axillary and the forehead measurements. The ear-based thermometer was the most common type used at home while the forehead thermometer was the one preferred by the children. In conclusion, ear-based temperature measurements in febrile children were more accurate than axillary and forehead temperature measurements. The current practice of axillary temperature measurement needs to be re-considered.
Resumo:
User induced errors are common when women repetitively employ conventional probe type thermometers to chart their basal body temperatures in an effort to indicate ovulation. An alternative technique employing a two-part telemetric thermometer is proposed, with low-power, SAWR-controlled UHF radio as the transmission medium. Worn overnight in the vagina, the 1 mu W erp telemetry transmitter sends pulse modulated data continuously to a microcontroller in a nearby receiver; a real time clock enables programmable sampling and storage of the subject's temperature to 0.1 degrees C resolution. Initial clinical results indicate an enhanced performance compared to oral and axillary temperature trends taken by a mercury-in-glass thermometer. Polar plots of both the isolated and body-worn telemetry transmitte are presented; body indced attenuations of up to 30 dB were measured.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation (DE) approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.